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Abstract

Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization
during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 pm) polymer nano-fibers with a certain
direction are fabricated by external macroscopic force (Fyon) interference introduced by H, gas flow, leading to
superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°.
In contrast, nano-wires and nano-bridges (1-8 um in length/10-80 nm in width) are generated by “spinning/stretching”
under internal microscopic force (fy) interference due to significant temperature difference in the non-uniform cooling
medium. The findings provide a novel theoretical basis for controllable polymer “bionic lotus” surface and will further
promote practical application in many engineering fields such as drag-reduction and anti-icing.
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Background

Bionic superhydrophobic (self-cleaning) surfaces with
micrometer-nanometer-scale binary structure (MNBS)
have aroused great interest of science and engineering
fields [1-3], which can be attributed to their potential
application prospects such as drag reduction on ship
hulls [4], anti-biofouling in maritime industry [5], and
anti-icing for power transmission [6]. Their superhy-
drophobicity (a water contact angle (WCA) larger than
150° and a water sliding angle (WSA) less than 10°)
strongly depends on MNBS structure [7,8]. In the past
few decades, many conventional attempts have been
done to fabricate superhydrophobic surfaces with MNBS
structure, such as creating a rough and well-ordered
metallic or inorganic surface covered with low surface
energy molecules, which is called two-step methods [9-14].
However, these methods usually are applied to small-scale
substrates at severe conditions, and the surfaces did not
exhibit long-term stability in the acid/alkali environment,
thus greatly limiting their applications in practical engin-
eering fields. On the other hand, a very simple one-step
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method involving solvent evaporation to fabricate a
polymer superhydrophobic surface with disordered micro-
structure has been reported [15-17]; however, it is easily
scraped off due to the weak cohesion between the coating
and substrate and the low resistance to high and low
temperature alternation, in addition no long-term stability
over a wide pH range (such as acid rain) was achieved.
In our previous work, we firstly demonstrated that bionic
superhydrophobic poly-(tetrafluoroethylene)/poly(pheny-
lene sulfide) (PTFE/PPS) coating surfaces with long-term
stability, high cohesive strength, and anti-temperature
change can be prepared by a simple, inexpensive, and
conventional coating-curing process [18-20]. However,
the nanometer-scale structure on these superhydrophobic
PTFE/PPS coating was basically cross-linking and dis-
orderly, leading to great obstacles for further explor-
ation on its anti-icing mechanism. Recently, Wang and
coworkers have reported that robust self-cleaning coatings
with well-ordered arrays were specially prepared by graft-
ing cross-linked polymers on the silicon wafer surfaces to
investigate their anti-icing mechanisms [21,22]. According
to the above researches, up to now, the mechanism for
self-cleaning surfaces with well-ordered polymer nano-
fibers on various large-scale substrates has not been
completely understood, and systematic study on it will
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significantly help explore new methods for polymer super-
hydrophobic surfaces in practical severe engineering fields.

Through the past 5 years' research, it is firstly found
that bionic self-cleaning surfaces with well-ordered poly-
mer nano-wires/fibers can be fabricated by disturbing
polymer crystallization during one-step coating-curing
process. Both the external macroscopic force and internal
microscopic force interferences on polymer aggregates
can significantly affect the nucleation and crystal growth
of polymer chains under various cooling conditions.
Orderly polymer nano-fibers (5 to 10 pm in length/100
nm in width) with a certain direction are obtained due
to an external macroscopic force ‘Fyjoy, Which is on the
same direction as the H, gas flow. This orderly MNBS
structure results in the coating with superior superhy-
drophobicity (WCA of 170° and WSA 0° to 1°), very similar
with ‘lotus effect” More particularly, well-ordered nano-
wires and nano-bridges (1 to 8 um in length/10 to 80 nm
in width) are generated at the non-continuous zone due
to an internal microscopic tensile force (Ft) by severe
uneven shrinkage of adjacent continuous phases in the
non-uniform medium (quenched in dry ice). The novel
method for well-ordered polymer nano-fiber will provide
a theoretical basis for other polymer self-cleaning surfaces
with MNBS texture on various metal substrates and
largely promote their practical application in many fields
such as drag-reduction and anti-icing.

Methods

Materials and coating preparation

Bionic lotus polymer surfaces were fabricated through
engineering materials, such as stainless steel or other
metal substrates (Al/Cu), by using a certain volume of
water-soluble PTFE emulsion and polyphenylene sulfide
dispersion in mixed solvent (distilled water/ethanol/
isobutyl alcohol in a volume fraction of 2:5:1), non-
ionic surfactant (octylphenol polyoxyethylene ether:
(CgH;7-Ph-O(CyH,O),H, n ~ 10), and industrial raw
material ammonium carbonate ((NH4),CO3) [18,20].
The steel/alumina/copper block was polished with
500" and 900" sand papers in turn, and then cleaned
with acetone in an ultrasonic bath for 5 min. The wet
coatings on stainless steel or various metal substrate
blocks were prepared by spraying the coating precursors
with 0.2 MPa nitrogen gas and curing at temperature
150°C for 1 h and 390°C for 1.5 h.

External macroscopic force interference

In order to investigate the impact of external macro-
scopic force interference on polymer nano-fibers, pure
PTFE coating (P1 coating) sample was naturally cooled
to 20°C in the sintering furnace after curing at 390°C for
1.5 h. In contrast to P1 coating, H, gas flow was passed
into the sintering furnace during the same curing and
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cooling process as P1 coating for PTFE/PPS superhydro-
phobic coating (P2 coating) sample.

Internal microscopic force interference

Internal microscopic force interference was introduced
to further investigate controllable polymer nano-papules
or nano-wires. After curing at 390°C for 1.5 h in the sin-
tering furnace, the PTFE/PPS superhydrophobic coating
samples were cooled at four different conditions, respect-
ively, as shown in Table 1. There are three coating samples
cooled in the uniform cooling mediums: the Q1 and Q2
coating were quenched in the air at room temperature
(20°C) and the cryogenic liquid medium (ethanol + dry
ice) at —60°C, respectively. In addition, the Q3 coating was
quenched in the non-uniform cooling medium (pure dry
ice cooling environment at —78.5°C).

Characterization

Microstructures of the bionic lotus polymer coating sur-
faces were observed by a scanning electron microscopy
(JSM-5600LV and field emission scanning electron micros-
copy (FE-SEM), JEOL, Akishima, Japan). Compositions
of the surface of pure PTFE and PTFE/PPS coatings
were analyzed by an X-ray photoelectron spectroscopy
(XPS) on a VG Escalab 210 (VG Scientific, East Grinstead,
UK) spectrometer with a Mg Ka X-ray source (1253.6 V).
The water static contact angle (WCA) and water sliding
angle (WSA) of distilled water droplets of 5 pL on the
superhydrophobic coating samples were tested by a con-
tact angle apparatus (DSA-100, KRUSS GmbH, Hamburg,
Germany). Morphologies of the water droplets of 5 pL on
the coatings were recorded with a digital camera.

Results and discussion
Well-ordered polymer nano-fibers by external
macroscopic force interference
In our previous work, we have demonstrated a simple and
conventional coating-curing process to create PTFE/PPS
superhydrophobic coatings with both MNBS roughness
and the lowest surface energy hydrophobic groups (-CF3)
on engineering materials such as stainless steel and other
metals [18,20]. However, the willow-leaf-like nanofibers
are mostly cross-linking and disorderly, and the formation
of these nanofibers is proposed to occur by means of a
liquid-crystal ‘templating’ mechanism [24-26]. The method
and mechanism for controllable fabrication of well-ordered
nanofibers on the PTFE/PPS superhydrophobic coatings
have always been a mystery and huge challenge for their
engineering applications. In this work, we firstly found
that external macroscopic force interference will help in
the formation of well-ordered nanofibers.

Figure 1 shows morphologies of both the pure PTFE
coating and the PTFE/PPS superhydrophobic coating.
Pure PTFE is prepared by curing at 390°C for 1.5 h and
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Table 1 Various cooling conditions for superhydrophobic polymer coatings after curing

Samples Crystallization interference methods Thermal conductivity of the mediums [23]
Q1 coating Quenched in the air at 20°C K= 0.026 [W/(m K)]

Q2 coating Quenched in the mixture of dry ice and ethanol at —60°C K= 0.24 [W/(m K)]

Q3 coating Quenched in the pure dry ice at —=78.5°C K= 0.099 [W/(m K)]

then naturally cooling to 20°C in the air (P1 coating).
The PTFE/PPS coating is fabricated by the above process
under protective atmosphere of hydrogen gas (P2 coating).
Only a disordered micrometer-nanometer-scale grass and
leaf-like structures (500 nm in width) were fabricated.
Micropores and nano-pores formed by cross-linking of
the PTEE fibers, which can be observed on the P1 coating
surface (Figure la,b,c). The composition of the micro/
nano-grass on P1 coating surface can be validated by XPS
spectra (Figure 2), as shown by the strong Cls peak at
292.1 eV binding energy (C-F2) (Figure 2b) [27,28]. Based
on the above nano-scale structure with only PTFE nano-
fibers, P1 coating surface exhibits hydrophobicity with a
WCA of 136°.

When PPS resin was added to PTFE coating (P2 coat-
ing), micrometer scale structure of porous gel network
with micropapillae and isolated islands were generated.
Micropores (approximately 60 pm in diameter) and micro-
papillae (20 to 30 pm in diameter) were scattered on the
surface of porous gel network, which were similar with
cauliflower pattern (Figure 1d). This porous structure
could be attributed to phase separation of PPS phase
[18,20,24]. Furthermore, thin and long PTFE nano-fibers
with dimensions of 5 to 10 um in length and 100 nm in
width exhibited a needle-like morphology. They were
distributed layer by layer on the surface of P2 coating

(Figure 1e,f). The fluorine (F) was enriched at the top
surface of P1 and P2 coating, as shown by the peak at
691.1 eV in the XPS survey spectra (Figure 2a). In
addition, the Cl1s peak for P2 coating observed at 293.5
eV binding energy (C-F3) is similar to the peak at 292.1
eV (C-F2) for P1 coating (Figure 2b) [27,28]. The above
data indicates the composition of the nano-fibers on P2
coating surface is mainly PTFE.

In our previous work, disorderly willow-like PTFE
nano-fibers (20 to 30 um in width) formed on the PTFE/
PPS coating during the cooling process in the furnace
that was exposed to air [18,20]. In our current work,
these PTFE nano-fibers of P2 coating distinctly extended
at a certain direction under continuous H, gas flow;
therefore, nano-wires and ‘nano-bridges’ formed with good
directional consistency as well as uniform nano-pores
(approximately 100 to 500 nm in width). In conclusion,
the P2 coating surface shows superior superhydrophobi-
city as verified by WCA (170°) and WSA (0° to 1°) values.

Compared with P1 coating with only nano-scale fiber
structure, nano-wires and nano-bridges with good direc-
tional consistency covered the microscale papillae and
the interface between them on P2 coating surface, leading
to formation of uniform nano-scale pores (100 to 500 nm
in width). As large amount of air was captured by the
nano-scale pores, the actual contact area between the

Figure 1 SEM micrographs of surface microstructures of the pure PTFE and PTFE/PPS coatings. SEM micrographs of surface microstructures
with different magnifications of the pure PTFE coating surface (P1 coating) (a X600, b x2,000, ¢ x10,000) and PTFE/PPS superhydrophobic coating
cured at 390°C under H, atmosphere (P2 coating) (d x600x, e x2,000, f x10,000). The insets show the behavior of water droplets on their surface:
(a) WCA = 136° and (d) WCA = 170°.
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Figure 2 XPS spectra for the pure PTFE and PTFE/PPS coatings. XPS survey spectra (a) and XPS C1s core-level spectra (b) of the surfaces of
pure PTFE coating (P1 coating) and PTFE/PPS superhydrophobic coating (P2 coating).
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water droplet and the coating surface greatly decreased
[29,30]; therefore, the WCA of P2 coating increased.
Moreover, the adhesion of water droplets on the orderly
thin and long nano-fibers was weakened resulting in the
decrease of contact angle hysteresis [29]; therefore, water
droplets on P2 coating rapidly rolled down. Furthermore,
the P2 coating shows better superhydrophobicity than the
PTFE/PPS coating (WCA of 165° and WSA of 5°) by the
same composition and curing process [20]. It is mainly
because external macroscopic force interference (H, gas
flow) can help to form MNBS structure with well-ordered
nano-bridges and uniform nano-pores (approximately 100
to 500 nm in width) (Figure 1f). Therefore, external
macroscopic force interference by H, gas flow during
the curing and cooling processes can be a good new
method for controllable fabrication of well-ordered poly-
mer MNBS structure with lotus effect.

The speculated mechanism of P1 coating and P2 coat-
ing is shown in Figure 3. In the case of P1 coating, the

temperature in the furnace was naturally cooled down
from 390°C to 20°C over a period of 10 h. During the
cooling process, the PTFE macromolecular chains experi-
ence nucleation and crystallization. The polymer chains
stretched around and entangled with each other during
crystallization process (Figure 3a), resulting in a stretching
force (Fs) on each PTFE macromolecular chain [31]. How-
ever, Fs; was approximately equal to Fs, as the direction
of forces is opposite to each other with the similar magni-
tude (Figure 3a). Therefore, the stretching force (Fs) could
be neglected (£Fs ~ 0). Thus, PTFE macromolecular
chains could stretch in an unstrained environment during
the crystallization to form disordered nano-grass and
nano-leaf. Compared with P1 coating, P2 coating was
under protection of continuous H, gas flow during the
curing and cooling processes. P1 coating and P2 coating
undergo the same curing and cooling process; however, a
force (Fplow) due to continuous H, gas flow was applied
on the PTFE macromolecular chains of P2 coating in

(a) Pure PTFE coating cooled in the furnace (P1 coating)

Freely str

disordered nano-grass

ZFs=0

Fulowx
Fs1

Folowy

(500 nm in width)

nano-wires/fibers
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Figure 3 The mechanism for well-ordered polymer nano-fibers by external macroscopic force. The sketch map of macroscopic and
microscopic forces on polymer chains during natural crystallization under protection of different atmospheres (a, b): fs, a stretching force generated
from natural crystallization of macromolecular chains; Fyion, @ microscopic force macromolecular chains derived from macroscopic H, gas flow.

(5-10 pm in length,
100 nm in width)
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addition to the stretching force Fs (Figure 3b). The force
(Fplow) 1s function of Fowx (perpendicular to Fs) and
Fylowy (parallel to Fs), as shown in Equation 1.

Fblow = Fblowx + Fblowy (1)

Thus, a new stretching force Fyjowy Was added to the
polymer chains. Therefore, polymer nano-fibers were
stretched at a greater extent compared with P1 coating
along the direction of Fijowy, leading to much thinner
and longer ‘nano-needles’ and nano-bridges (100 nm in
width/5 to 10 pum in length).

Polymer nano-papules or nano-wires by internal
microscopic force interference

In our previous work, we have found that a higher curing
temperature and longer cooling time resulted in longer
crystallizing process during coating cooling process,
which is beneficial to create the willow-leaf-like or wheat-
haulm-leaf-like micro/nano-fiber on the atop surface of
PTFE/PPS superhydrophobic coatings [20]. Moreover, the
PTFE/PPS coating was hardened in H,O after curing at
380°C to demonstrate the mechanism of the creation
of micro-nano-scale binary structures (i.e., liquid-crystal
‘templating’ mechanism). The atop surface of the PTFE/
PPS coating by hardening in H,O was covered with
micro/nano-fluorocarbon papillae textures of 200 to
800 nm in diameter compared with that produced by
natural cooling in air [18,20]. However, the effect of
internal microscopic force during the quenching process
(crystallization process) on the nano-scale structure of the
PTEE/PPS coating has still not been understood and
systematically investigated.

On the basis of ‘well-ordered polymer nano-fibers by
external macroscopic force (Fyo,) interference’ as men-
tioned above, the method and mechanism for orderly
nano-fibers/spheres by internal microscopic force inter-
ference during the crystallization process in different
cooling mediums (cooling rate) have been further sys-
tematically investigated in this work.

Figure 4 shows the surface morphology of the PTFE/
PPS superhydrophobic coatings fabricated by quenching
in different uniform cooling mediums after curing at
390°C for 1.5 h: Q1 coating was quenched in the air at
20°C, while Q2 coating was quenched in the mixture of
ethanol and dry ice at —-60°C. The surface of Q1 coating
also exhibits porous gel network and micropapillae
structure similar with P2 coating. In addition, relatively
smaller PTFE nano-spheres and papules (80 to 200 nm
in diameter) were distributed uniformly and consistently
on the smooth continuous surface of the micropapillae
and isolated islands, as shown by the continuous zone
in Figure 4b. The tangled nano-willow and nano-fiber
segments were scattered on the interface surface (discon-
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tinuous zone) of the gel network and micropapillae phase
(Figure 4c). Both nano-willow and nano-fiber segments are
approximately 1 pm in length and 100 to 500 nm in
width (Figure 4c). Q2 coating exhibits similar micro-
structure with Q1 coating, which is shown in Figure 4.
Moreover, more uniform, dense nano-spheres and papules
(approximately 60 to 150 nm in diameter) were distributed
on the continuous surface of micropapillae with a relatively
higher degree of overlap in comparison to Q1 coating
(Figure 4d,e). Besides, shorter and wider nano-fiber seg-
ments with 100 to 500 nm in length and 200 to 400 nm
in width were distributed on the rough discontinuous
surface (Figure 4d,f). In addition, such MNBS texture
leads to superhydrophobicity for Q1 and Q2 coating
with a WCA of 158° and 153°, respectively.

Furthermore, Q3 coating was hardened in the non-
uniform cooling medium (pure dry ice media) at -78.5°C
after curing at 390°C for 1.5 h. It can be seen that the sur-
face of Q3 coating exhibits similar porous gel network and
micropapillae structure (Figure 5a) with P2, Q1, and Q2.
In addition, the PTFE nano-spheres, with 20 ~ 100 nm in
diameter, were distributed most uniformly, consistently,
and densely on the smooth continuous surface (continuous
zone) of the micropapillae (Figure 5a,b,c). However, obvious
cracks and gaps appeared on the discontinuous interface
(discontinuous zone) of the gel network and micropapillae
(Figure 5a,d). New polymer nano-wires were generated at
the cracks or gaps between the micropapillae (Figure 5e,f,g,
h). The length and width of the polymer nano-wires range
from 1 to 8 pm and 10 to 80 nm, respectively. Moreover,
the long PTFE nano-wires were tightly bonded on respect-
ive walls in gap forming nano-bridges (Figure 5e,f,gh). Q3
coating has a MNBS texture with a WCA value of 154%;
therefore, Q3 coating is also superhydrophobic as P2, Q1,
and Q2 coating.

As the nano-scale pores between dense nano-papules
and nano-spheres stacked on the micro-scale papillae
of Q1, Q2 and Q3 coating were much smaller than the
pores between orderly thin and long nano-fibers on P2
coating, leading to reduction of the amount of air
captured by the pores; thus, the contact area between
the water droplet and the coating surfaces increased
[29,30], and as a result, the WCA of Q1, Q2, and Q3
coating was smaller than P2 coating by more than 10°.
In addition, the adhesion of water droplets on Q1, Q2,
and Q3 coating was greater than that of P2 coating,
due to poor directional consistency of nano-papules
on Q1, Q2, and Q3 coating. Thus, the contact angle
hysteresis of water droplets increased [29], and water
droplets can be placed upside down on Q1, Q2, and
Q3 coating. In conclusion, polymer surfaces with nano-
fiber MNBS texture generated by external macroscopic
force interference possessed superior non-wettability and
superhydrophobicity compared with polymer surfaces
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of water droplets on their surfaces: (@) WCA = 158° and (d) WCA = 153°.

Figure 4 FE-SEM micrographs for PTFE/PPS coatings via uniform cooling processes. FE-SEM micrographs with different magnifications of
surface microstructures of PTFE/PPS superhydrophobic coating cured at 390°C for 1.5 h and then quenched in air-atmosphere cooling conditions
(Q1 coating) (a x2,000, b x10,000, € x30,000) and in —60°C low temperature uniform cooling medium (Q2 coating) (d x2,000, e x10,000, f x30,000).
The continuous zone of the coatings is marked with red circles while the discontinuous zone is marked with red ellipse. The insets show the behavior

with ‘nano-papules MNBS texture’ obtained by internal
microscopic force interference.

Mechanism for controllable polymer nano-spheres/
papules, nano-wires/fibers fabricated by disturbing crys-
tallization process under different cooling conditions are
shown in Figure 6, and the surface composition of Ql,
Q2, and Q3 coating can be seen in Additional file 1:
Figure S1. When the Q1 coating was quenched in the
air, the PTFE aggregates (macromolecular chains) were
instantly surrounded by the air molecules at 20°C
(Table 1 and Figure 4). In this condition, the crystallization
process of PTFE aggregates were suppressed [32], leading
to the formation of fluorocarbon nano-papules on the
smooth continuous surface of micropapillae (Figure 4a,b).
However, rough discontinuous interfaces (discontinuous
zone) of the gel network observed on Q1 coating surface
(Figure 4a,c) have higher interfacial energy and longer
cooling time in comparison to the continuous zone
[31,33]. It is believed that high interfacial energy helps
in the nucleation process and crystal growth of the
polymer aggregates [33], and therefore, both thermal
motion of polymer aggregates and the degree of entangle-
ment of PTFE aggregates in the discontinuous zone in
comparison to the continuous zone were enhanced,
resulting in the formation of both nano-willow and
nano-fiber segments.

Compared to Q1 coating, similar crystallization process
took place in Q2 coating. The temperature of Q2 coating
was dramatically reduced to about —-60°C within just a few
seconds (Table 1). It is believed that the cooling rate of
the coating samples is closely related with the thermal
conductivity of the cooling mediums. The nucleation

and crystal growth processes of the PTFE aggregates
were inhibited at a greater extent due to higher thermal
conductivity compared to Q1 coating (Table 1) [23], as
the thermal motion of PTFE aggregates were greatly
suppressed, and therefore, there was not enough time
for the PTFE aggregates to crystallize and grow to form
nano-fibers (Figure 4d,e) [31,32]. On the other hand,
there were large amount of protruding defects with high
energy on the rough discontinuous interface between the
gel network in Q2 coating (Figure 4d,f), which promote
the nucleation and crystal growth of the PTFE aggregates
[33]. Thus, polymer nano-spheres/papules coexisted with
smaller nano-fiber segments at the end of the cooling
process.

In comparison to Q1 and Q2 coating, the Q3 coating
was quenched at -78.5°C in the non-uniform medium
(pure dry ice) after the same curing process. The smallest
polymer nano-papules (20 to 100 nm in diameter) were
scattered most uniformly and densely on the continuous
zone due to the highest cooling rate (Table 1). In addition,
cracks/gaps were generated at the discontinuous interface
(discontinuous zone) (Figure 5a,d), which can be attrib-
uted to shrinkage tension from adjacent continuous phase
(continuous zone) during the abrupt intense cooling
process. Thus, PTFE macromolecular chains covered
on the discontinuous zone crystallized similar with
Q1 and Q2 coating, and they were rapidly ‘spinned/
stretched” to form more slender polymer nano-wires
and nano-bridges (10 to 80 nm in diameter), as shown
in Figure 5e,f,g,h.

Furthermore, the impact of internal microscopic force
generated in the abrupt intense cooling processes on the
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ISM-BT01F

WCA = 154°.

Figure 5 FE-SEM micrographs for PTFE/PPS coatings via non-uniform cooling processes. FE-SEM micrographs with different magnifications
of surface microstructures of PTFE/PPS superhydrophobic coating cured at 390°C for 1.5 h and then quenched in the dry ice cooling medium

(Q3 coating) (a x2,000, b x10,000, € x30,000, d x2,000, e x10,000, f x30,000, g x10,000, h x30,000).The continuous zone of the coatings is marked
with red circles while the discontinuous zone is marked with red ellipse. The insets show the behavior of water droplets on Q3 coating surface:

MNBS texture of the PTFE/PPS superhydrophobic coat-
ings was investigated systematically. A stretching force
(Fs) was generated in the natural crystallization process
for the continuous zone in Q1, Q2, and Q3 coating [31]. In
addition, another tensile force (Ft) was applied on the re-
spective macromolecular chains in the continuous zone in
Q1, Q2, and Q3 coating under quenching interference, as
shown in Equation 2.

FTIEX&ZIX (TO - Tl) (2)

Where E is Young's modulus, 4 is coefficient of linear
expansion, and T, and T are the initial and final tempera-
tures, respectively [34]. The force F1 was derived from the
intense shrinkage of surrounding macromolecular chains
on the cooling process. As the temperature decreased at
the same rate for the continuous zones during the whole
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Figure 6 The mechanism for polymer nano-papules or nano-wires by internal microscopic force. The sketch map for mechanism of
nano-papules, nano-segments, and nano-wires structures by internal microscopic force interferences (Fs and Fy) under uniform and non-uniform
cooling conditions (a, b): Fs, a stretching force generated from natural crystallization of macromolecular chains; f, a new tensile force derived
from the shrinkage of surrounding macromolecular chains when the temperature dramatically decreased.

nano-fiber segments
(100-500 nm in length,
200-400 nm in width)

nano—wlreslbrldqas
(1-8 pm in length,
10-80 nm in width)

quenching (crystallization) processes, Fs and Fr were at
the equilibrium state, respectively (XFs = 0, £Ft =~ 0);
therefore, the crystallization of polymer chains at con-
tinuous zone of QI, Q2, and Q3 coating was in an
unconstrained environment similar with P1 coating.
However, the crystal growth of polymer chains was
different because crystallization time of QI, Q2, and
Q3 coating was much shorter than P1 coating (Table 1).
Therefore, only nano-spheres/papules formed in the
continuous zone for Q1, Q2, and Q3 coating. Moreover,
increasing the cooling rate gradually from Q1 to Q3
coating (Table 1) resulted in a size reduction of polymer
nano-spheres with a higher degree of overlap.

On the other hand, for the discontinuous zone of
Q1, Q2, and Q3 coating (Figures 4 and 5) between the
porous gel network and micropapillae, the nucleation
and crystal growth of polymer chains were promoted
because of high interfacial energy [33]. At the same
time, the cooling time in the discontinuous zone was
longer than the continuous zone because of less exposure
in the cooling medium. Although a tensile force (Fr)
was generated by the uneven shrinkage from adjacent
continuous phase of the coatings under the quenching
interference [35-37], Fr+ was much smaller than the crit-
ical value (F.) for both Q1 and Q2 coating. Thus, the
crystallization process of polymer chains was dominated
by the crystallization driving force and crystallization time
[32,38]; therefore, nano-willow and nano-fiber segments
were obtained in the discontinuous zone of Q1 coating,
while nano-spheres/papules coexisted with smaller nano-
fiber segments in the discontinuous zone of Q2 coating.

However, when Q3 coating was quenched in a non-
uniform medium interference, the polymer chains at
discontinuous zone suffered much larger tensile force
Fr than the discontinuous zone of Q1 and Q2 coating,
due to the significant temperature difference between

the continuous zone and discontinuous zone (Table 1).
The tensile force Fr was large enough (Fr> > F., and
YFr> > 0) to pull the discontinuous zone off to form
cracks and gaps, as shown by the discontinuous zone in
Figures 5ef,g,h and 6b. Therefore, nano-wires and nano-
bridges can be formed by spinning polymer aggregates
(Figure 5e,f,g,h).

As mentioned above, both macroscopic force interference
and internal microscopic force interference will significantly
affect the crystallization of polymer chains under different
conditions. The MNBS texture and surface behaviors of
these coatings are summed in Table 2. In comparison
to disordered nano-grass structure of P1 coating, PTFE
nano-fibers (5 to 10 pm in length/100 nm in width) with
good directional consistency covered the microscale papil-
lae (continuous zone) and the interface (discontinuous
zone) between them on P2 coating surface, due to external
macroscopic force interference by H, gas flow (Figure 3b).
Since large amount of air was captured by the nano-scale
pores and the adhesion of water droplets on the orderly
thin and long nano-fibers was significantly weakened
[29,30], the P2 coating surface shows superior superhydro-
phobicity (a WCA of 170° and a WSA of 0° to 1°). On the
other hand, as the internal microscopic force interference
(cooling rate) gradually increased, smaller and smaller
PTFE nano-spheres and papules (80 to 200 nm, 60 to 150
nm, and 20 to 100 nm in diameter) were distributed uni-
formly and consistently on the smooth continuous surface
(continuous zone) of Q1 coating (quenched in the air at
20°C), Q2 coating (quenched in the mixture of ethanol
and dry ice at -60°C), and Q3 coating (quenched in pure
dry ice at -78.5°C), respectively (Figures 4b,e and 5c). In
addition, much shorter and wider nano-scale segments
were distributed on the rough discontinuous surface (dis-
continuous zone) of Q1 and Q2 coating compared with
P1 coating. Moreover, PTFE macromolecular chains were
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Table 2 MNBS texture and surface behaviors of the coatings
Samples MNBS texture WCAs WSAs
Continuous zone Discontinuous zone (degrees)  (degrees)
P1 coating  Disordered nano-grass (500 nm in width) - 136 -
P2 coating  Well-ordered nano-fibers Well-ordered nano-fibers (5 to 10 um in length/100 nm in width) 170 Oto1
(5 to 10 um in length/100 nm in width)
Q1 coating  Nano-scale spheres/papules Willow-like nano-scale segments (approximately 1 um in length/ 158 -
(80 to 200 nm in diameter) 100 to 500 nm in width)
Q2 coating  Nano-scale spheres/papules Nano-scale fiber segments (100 to 500 nm in length/200 to 153 -
(60 to 150 nm in diameter) 400 nm in width)
Q3 coating  Nano-scale spheres/papules Orderly nano-scale wires/bridges (1 to 8 um in length/10 to 154 -

(20 to 100 nm in diameter)

80 nm in width)

rapidly ‘spinned/stretched’ to new nano-scale ‘bridges’ (1 to
8 pum in length/10 to 80 nm in width) by a great micro-
scopic tensile force at discontinuous interface (discon-
tinuous zone) of Q3 coating (Figure 5e,f,g,h). As much
smaller nano-papules/spheres with poor directional
consistency stacked densely on the continuous zone of
Q1, Q2, and Q3 coating, the contact area between the
water droplet and the coating surfaces increased at some
extent, and the adhesion of water droplets on Q1, Q2, and
Q3 coating was greater than that of P2 coating [29,30]. As
a result, the WCA of Q1, Q2, and Q3 coating was smaller
than P2 coating by more than 10°, and water droplets can
be placed upside down on these coatings. In summary,
polymer surfaces with nano-fiber MNBS texture by exter-
nal macroscopic force interference possessed superior
superhydrophobicity compared to ‘nano-papules MNBS
texture’ by internal microscopic force interference, and
introducing external macroscopic force interference by H,
gas flow to the curing and cooling processes could be a
good method for controllable fabrication of well-ordered
polymer nano-fiber MNBS texture with lotus effect.

Conclusions

By disturbing crystallization during one-step coating-curing
process, bionic lotus surfaces with controllable polymer
nano-spheres/papules, nano-wires/fibers were firstly fabri-
cated. It is demonstrated that both macroscopic force
interference and internal microscopic force interference
on polymer aggregates under different cooling conditions
will significantly affect the crystallization of polymer
chains. Polymer chains stretched and elongated freely to
form a disordered micro-nano-scale grass/leaf-like morph-
ologies in pure PTFE coating (P1 coating), while orderly
polymer nano-fibers (100 nm in length/5 to 10 pm in
width) with a certain direction are obtained by the force
Filow along the direction of H, gas flow. During the
quenching process in the uniform and non-uniform
mediums, nano-papules/spheres (20 to 200 nm in diam-
eter) formed in the continuous zone, while polymer aggre-
gates are partially stretched to nano-fiber segments (1 pm

in length/100 to 500 nm in width) during the crystallization
process in the discontinuous zone.

However, by polymer crystallization interference in the
non-uniform medium, the polymer chains at discontinuous
zone of Q3 coating suffered much greater tensile force (Fr)
in comparison to Q1 and Q2 coating which can be attrib-
uted to the temperature difference between the continuous
zone and discontinuous zone. The tensile force was large
enough (Fr> > F., and Fr> > 0) to generate cracks and
gaps in the discontinuous zone for Q3 coating. Therefore,
nano-wires and nano-bridges (1 to 8 pm in length/10 to
80 nm in width) formed. We bring a novel perspective to
controllable polymer nano-fibers; this study will provide a
theoretical basis for polymer superhydrophobic surface
with MNBS texture and promote development of polymer
superhydrophobic surfaces in many engineering fields such
as drag reduction and anti-icing.
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