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Abstract

TBs depends strongly on the twin spacing.
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In the present study, we perform molecular dynamic simulations to investigate the compression response and
atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression
depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the
underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation
motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from
dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of

Background
Nanoparticles have been widely used as the reinforced
particles in composites, high-performance catalytic and
energy harvest materials, etc. [1,2]. Most recently, through
advanced fabrication techniques, it is even possible to
fabricate nanostructures with controllable internal defects
such as twin boundaries (TBs) [3,4]. To explore the wider
applications of nanoparticles with TBs, it is imperative to
characterize their mechanical properties precisely and
understand their fundamental deformation mechanisms.
In nanosized volume, the mechanical behavior de-
pends on not only the intrinsic characteristics such as
crystalline structure and internal defects, but also the
extrinsic geometry and size. Gerberich et al. measured
the hardness of silicon nanospheres with radii in the
range of 20 to 50 nm and found that the hardness was
up to 50 GPa [5], four times greater than that of bulk
silicon. The plastic deformation in silicon nanospheres
was theorized to heterogeneous dislocation nucleated at
the contact edges and followed by dislocation propagation
along a glide cylinder. Molecular dynamic simulations indi-
cated that phase transformation could dominate in silicon
nanoparticles [6]. When the diameter of silicon particles
was less than 10 nm, dislocation nucleation was suppressed
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and the hardness lowered with decreasing diameter [7].
Despite the advance in these previous studies, however,
the plastic deformation mechanisms in metallic nanoparti-
cles have not yet been fully illuminated. Recently, Bian and
Wang revealed that the formation of dislocation lock and
deformation twinning dominated in the plastic deform-
ation of copper nanospheres [8].

Coherent twins with low-stacking fault energy could
strengthen metals by preventing dislocation from cross-
slipping and simultaneously improve ductility by accom-
modating dislocations gliding parallel to twin planes [4,9].
In addition, TBs could serve as non-regeneration dis-
location source contributing to twin migrations [10]. A
strengthening-softening transition was exhibited in nanot-
winned materials for twin thickness below a critical value,
and a discrete twin crystal plasticity model was developed
to investigate the size-dependent mechanism [11]. The in-
fluence of TBs would be even more prominent in indi-
vidual small-volume materials. In single crystal nanowires,
twin spacing together with sample diameter determined
the yield stress [12], and the strengthening resulted from
slip arrests at the intersection of partial dislocations and
TBs [13]. Twinned copper nanopillars exhibited tension-
compression asymmetry, and the plastic deformation could
be either reversible or irreversible depending on the stress
state. The nucleation and glide of twinning dislocations
were the responsible mechanisms for reversible deform-
ation [14], and the subsequent TB migrations could be
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described by the stick—slip mechanism of coherent TBs
[15]. In nanopillars with orthogonally oriented TBs, a
brittle-to-ductile transition was observed under uniaxial
tension when twin spacing decreased below a critical value.
While in nanopillars with slanted TBs, shear offsets and
de-twinning dominated the deformation process [3]. For
nanoparticles with fivefold twins, TBs greatly increased
both the strength and malleability of particles [16]. How-
ever, the influence of TBs on the mechanical behavior of
metal nanospheres is still unclear up to now. This paper is
to investigate the deformation mechanisms in twinned
copper nanoparticles subjected to uniaxial compression.

Methods
Consider a face-centered-cubic (fcc) copper nanosphere
with parallel (111) coherent TBs under compression, as
shown in Figure 1. The twin spacing is d and the loading
direction varies from [111] to [110] indicated by a tilt angle
0 between the twin plane and compressive plane. The em-
bedded atom method (EAM) is utilized to describe the in-
teractions between copper atoms [17], which has been
widely adopted for copper crystals [18,19].

To simulate the compression process, a repulsive po-
tential is employed to characterize the interaction be-
tween copper atoms and the planar indenter as [20,21]

Ui(M(zi=h)) = K\ (z=h)"H (M (zi-h)) (1)

where K is a specified force constant related to the hard-
ness of indenter, /s is the position of the compression
plane, A(z; — h) is the distance between the i-th atom
and the planar indenter, H is the unit step function, and
A equals 1 for the top indenter, -1 for the bottom in-
denter, respectively.

The molecular dynamics simulations are performed
using LAMMPS developed by Sandia National Labora-
tories. In simulations, the surface of nanosphere is free,
except atoms adjacent to the top and bottom indenters
experiencing a repulsive potential. An NVT ensemble is
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chosen with velocity-Verlet integration and a time step of
2.0 fs, and the temperature is controlled at 10 K using a
Nosé-Hoover thermostat [22,23]. Before compression, the
systems are firstly equilibrated at 10 K for about 20 ps.
During compression, the top and bottom indenters simul-
taneously move toward the center of the sphere with a
constant velocity of approximately 10 m/s, and the com-
pression depth J is defined as the decreasing distance be-
tween the two indenters.

We fix the radius of nanosphere as 15 nm and investi-
gate the effects of TBs on the deformation of twinned
nanoparticle. The total number of atoms in simulations is
about 1.2 million. The common neighbor analysis (CNA)
method is utilized to analyze the defect structures inside
the deformed nanosphere [24]. In this method, atoms in
perfect fcc lattice are distinguished from those in hep lat-
tice, surface, dislocation cores and other defects.

Results and discussion

Firstly, we examine the influence of twin spacing in
nanosphere with the loading direction perpendicular to
the TBs (6=0°). Figure 2 shows the load response of
twinned nanospheres with twin spacing d varying from
1.25 to 5.09 nm. For comparison, the load response of a
twin-free nanosphere is also included.

When measuring the elastic properties of single crystal
materials, the classical Hertzian contact theory is widely
used to estimate the reduced modulus in MD simulations
[6,25]. For the compression of an elastic sphere with ra-
dius of R, Hertzian theory predicts the relationship be-
tween applied load F and compression depth & as [26]

4 3/2
F= gE*RW (g) (2)

where E is the reduced Young’s modulus of the sphere.
In this paper, E is fitted from the load versus compres-
sion depth relation in the elastic regime by Equation 2.
For different twin spacing, the value of E* keeps almost
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Figure 1 Schematics of compression of twinned nanospheres. Simulation model (a) and internal twin structures (b).
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the same as 287.4 GPa. It is seen that the elastic re-
sponse of nanosphere under compression is determined
mainly by the local elastic properties under indenter.
Therefore, for a given loading direction, the change of
twin spacing does not affect the overall elastic response
of nanosphere. And the reduced modulus is much larger
than the theoretical prediction 153 GPa of the bulk sin-
gle crystal material in <111 > direction [27]. In nanowires
and nanoparticles, improved elastic modulus and yield
stress have also been observed [5,13].

However, the introduction of TBs plays an important
role in plastic deformation. The first load-drop, as marked
by arrows in Figure 2, indicates the appearance of initial
yield. The local peak load corresponding to the first load-
drop may be considered as the yield load. It is found that,
when the twin spacing decreases from 5.09 to 1.25 nm,
the yield load increases from 0.28 to 0.62 pN. In the fur-
ther development of plasticity, the compression load of
the twinned nanosphere is significantly larger than that of
the twin-free nanosphere for the same compression depth.
The highly serrated load-compression response is indica-
tive of dislocation activities inside the deformed nano-
spheres. To estimate the influence of TBs qualitatively, the
strain energy stored in nanospheres up to a given com-
pression depth (§/R =53.3%) is also shown in Figure 3. It
is found that, the strain energy of twinned nanospheres in-
creases clearly as the twin spacing decreases, reaching its
maximum at the twin spacing of 1.88 nm, and then de-
clines with further decreasing twin spacing. Such character-
istics are similar to those in nanotwinned polycrystalline
materials [4,9].

In order to understand the underlying strengthening
mechanisms, we examine the atomistic structures in
plastic stage for several samples, as shown in Figure 4.
For a twin-free nanosphere, the plastic deformation be-
gins with the nucleation of partial dislocations from the

contact edge, and the dislocations then glide on {111}
slip planes. Without experiencing obstacles from TBs,
most partial dislocations easily glide to the opposite sur-
face and annihilate here, forming surface steps. This
process exhausts nucleated dislocations in nanosphere
and reduces dislocation density, corresponding to the
dislocation starvation mechanism. In the compression of
twinned nanospheres, dislocation embryos will still nu-
cleate from the contact fringe. However, the existence of
TBs hinders dislocation gliding, and the volume between
the initial contact surface and the topmost TB deter-
mines when the first load-drop occurs, similar to that
observed in nanocrystallines [28]. When the volume is
large, there is ample space for dislocation gliding, the
first load-drop is close to that of the twin-free sample, i.e.,
d=5.09 nm. When the volume is small, dislocations are
hindered after impinging the TB, and the cutting through
TB results in the first load-drop. The smaller the volume,
the larger the yield load.

When the compression direction is perpendicular to
TBs, the slip directions and slip planes of most disloca-
tions are intersecting with twin planes. With the compres-
sion increasing and plastic deformation developing toward
the center of nanospheres, dislocations will have to
cut through TBs one by one, which corresponds to the
strengthening of dislocation-TB interaction [29,30]. An-
other main strengthening in twinned nanospheres comes
from the formation of Lomer dislocations. As an extended
dislocation is driven into a coherent TB by progressive
compression, it recombines into a perfect dislocation at
the coherent TB. After slipping through the TB, instead of
splitting into Shockley partials, many full dislocations glide
on {100} planes in next twin lamella and form {100} < 110
> Lomer dislocations.

When the twin spacing is large, there is ample room
in twin lamella for Lomer dislocation cross-slip and
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Figure 4 Atomic defect structures inside nanosphere with different twin spacing. Atoms are colored by their CNA parameters, and those in
perfect fcc lattice are not shown. Coloring scheme: yellow for atoms at surface, dislocation cores, or other defects and blue for atoms in TBs or

d=2.50 nm

dissociation. A Lomer dislocation firstly cuts through
new TBs after reaching them, then cross-slips on to the
usual {111} slip plane and dissociates into two partial
dislocations, connected by a stacking fault. While the
remaining dislocation segments in the original twin la-
mella rotate to form pure screw Lomer dislocation seg-
ments, then they also cross-slip on to {111} planes and
dissociate into extended dislocations. In subsequent de-
formation, both the extended dislocations in original
and new twin lamellas will form new Lomer dislocations
after reaching TBs. These repeated cross-slips and
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Figure 5 Evolution of dislocation density inside nanosphere

with different twin spacing.

dissociations of Lomer dislocations generate complex
dislocation network inside nanospheres [31].

When the twin spacing is smaller than a critical value
(such as d<1.88 nm), there is no ample room between
TBs, and dislocation dissociation is highly restricted. This
is different from that in bulk nanotwinned material with
small twin spacing when both cross-slip and dissociation
are suppressed [31]. The jogged full dislocation could
quickly cut through TBs after generation, passing the
central region of nanosphere. This process leaves a large
number of partial dislocations at twin planes. Plasticity
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Figure 6 Load versus compression depth response of

nanosphere with different twin tilt angle.
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Figure 7 Strain energy of the deformed nanosphere as a
function of twin tilt angle up to 6/R =53.3%.

-

accommodated by the gliding of these twinning disloca-
tions is a softening mechanism in nanotwinned materials
[9,30]. In addition, the restriction of small twin spacing on
dislocation dissociation also decreases the obstacles for
the subsequent glide of dislocations in twin lamellas.

The dislocation density is also an indicator of plastic de-
formation. The evolutions of dislocation densities versus
compression depth are depicted in Figure 5. It is noted that
for the compression of the twin-free nanosphere, the dis-
location density maintains nearly a constant for §/R > 13.3%
when the nucleation of dislocations is balanced by the dis-
location exhaustion. While for the twinned nanospheres,
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the dislocation density increases gradually as compression
progresses. Decreased twin spacing increases dislocation
density, while continuous refinement of twin spacing below
1.88 nm does not improve dislocation density apparently.
We also use the newer potential developed by Mishin et al.
[32] to simulate the same problem, and quite similar de-
formation characteristics are observed.

Then we examine the influence of loading direction by
fixing the TB spacing at 3.13 nm and changing the tilt
angle 0 from 0° to 90°. Figure 6 gives the corresponding
load-compression depth relation. The reduced Young’s
modulus in different loading directions is fitted by the
Hertzian contact theory (Equation 2). Owing to the local
mechanical property under indenter varies as the load-
ing direction changes, the reduced Young’s modulus de-
clines quickly from 287.4 to 141.4 GPa. As shown in
Figure 6, when the twin tilt angle 0 is larger than 10°,
the averaged atom compactness in compression direc-
tion is close to that in <110 > direction; hence, all the fit-
ted reduced elastic moduli are around 141.4 GPa, which
is close to the theoretical prediction 148.7 GPa of bulk
material in <110 > direction [27].

In the plastic deformation regime, the load-compression
depth curves tend to decline continuously as the tilt angle
0 increases from 0° to 75°, while rise as the tilt angle 0 in-
creases further from 75° to 90°. Such dependence on load-
ing direction also appears in the strain energy up to a
given compression /R =53.3%, as displayed in Figure 7.
The variation of plastic deformation in different loading
direction implies a possible switch of deformation mech-
anism in nanospheres.
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Figure 8 Atomic defect structures inside twinned nanosphere under different loading direction. The identification and coloring scheme of
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Figure 9 Evolution of dislocation density inside nanosphere
with different twin tilt angle.

Figure 8 examines the atomic patterns inside three
nanospheres with various loading directions. In all cases,
dislocations will nucleate from the contact fringes, as
shown in al, bl, and c1 of Figure 8. As the tilt angle 6 in-
creases from 0° to 75°, the motion of dislocations will
transfer from intersecting with twin planes to slipping par-
allel to the twin planes, and thereby the blocking effect of
TBs will decrease [29,30]. The slip of dislocations results
in the migration of TBs or the generation of stacking faults
spanning twin lamellae, as shown in b2 of Figure 8. It is
also interesting to notice that TBs tend to rotate toward
the compression plane, as shown in b2 and b3 of Figure 8.
When the tilt angle 6 is close to 90°, though the glide dir-
ection of dislocations is parallel to TBs, the slip planes are
inclined to the twin planes. Both the leading and trailing
partials, connected by stacking fault ribbons, are bounded
by neighboring TBs while expanding as shown in ¢2 and
3 of Figure 8, which lead to another strengthening mech-
anism of twin-dislocation interactions [29,30]. The corre-
sponding dislocation density evolution is depicted in
Figure 9. It is noted that when the twin tile angle 6 is equal
to 0° or 90°, the resultant dislocation density is apparently
larger than those in other cases.

Conclusions

In the present study, MD simulations are performed to
address the influence of TBs on the compression of
nanospheres. The elastic response of twinned nano-
spheres under compression is determined mainly by the
local elastic properties under indenter and still can be
captured by the classical Hertzian contact model. Com-
pared to the twin-free sample, the existence of TBs in
nanospheres greatly increases the strain hardening in
plastic deformation, depending on the twin spacing
and loading direction. As the tilt angle between
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compression plane and TBs increases from 0° to 75°, the
strengthening of TBs declines, while increases again as
the tilt angle approaches to 90°. Correspondingly, the
plastic deformation mechanism switches from intersect-
ing with TBs, slipping parallel to TBs, and then to being
restrained by TBs, as the tilt angle increases. Moreover,
the enhancement of TBs increases evidently as the twin
spacing decreases, obtaining its maximum at a critical
twin spacing, and then declines.
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