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In vitro enhancement of dendritic cell-mediated
anti-glioma immune response by graphene oxide
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Abstract

Malignant glioma has extremely poor prognosis despite combination treatments with surgery, radiation, and
chemotherapy. Dendritic cell (DC)-based immunotherapy may potentially serve as an adjuvant treatment of glioma,
but its efficacy generally needs further improvement. Here we explored whether graphene oxide (GO) nanosheets
could modulate the DC-mediated anti-glioma immune response in vitro, using the T98G human glioma cell line as
the study model. Pulsing DCs with a glioma peptide antigen (Ag) generated a limited anti-glioma response compared
to un-pulsed DCs. Pulsing DCs with GO alone failed to produce obvious immune modulation effects. However,
stimulating DCs with a mixture of GO and Ag (GO-Ag) significantly enhanced the anti-glioma immune reaction
(p < 0.05). The secretion of interferon gamma (IFN-γ) by the lymphocytes was also markedly boosted by GO-Ag.
Additionally, the anti-glioma immune response induced by GO-Ag appeared to be target-specific. Furthermore, at
the concentration used in this study, GO exhibited a negligible effect on the viability of the DCs. These results
suggested that GO might have potential utility for boosting a DC-mediated anti-glioma immune response.
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Background
Malignant glioma is the most common primary brain
tumor with grim prognosis. Current therapies, including
surgery, radiation therapy, and chemotherapy, present
limited efficacies for treating malignant glioma [1,2].
Local control of the tumor is difficult in more than 80%
of cases, because glioma cells infiltrate the surrounding
tissues with high capabilities of migration and invasion.
Even with intensive treatment, gliomas frequently recur
due to the growth of residual diseases beyond the surgi-
cal resection margins [3,4]. During the past 30 years, lit-
tle improvement in survival time has been achieved for
patients with high-grade (grades III and IV) glioma, and
long-term survival is rare [5]. This situation has stimu-
lated a strong interest in developing novel therapies for
malignant and recurrent gliomas.
Dendritic cell (DC)-based immunotherapy represents

a promising approach for development of novel therap-
ies against malignant glioma. DCs play a central role in
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generating a specific immune reaction to antigens, which
generally need to be ingested, processed, and presented by
DCs, before triggering a B cell- or T cell-mediated response.
This key immune mechanism has been utilized in designing
DC-based anti-cancer immunotherapy, whereby a patient's
DCs are expanded with in vitro culture, stimulated with
tumor antigen, and injected back to the body to elicit anti-
cancer immune reactions [6]. DC-based immunotherapy
generated promising results in some early-stage clinical
trials [7-10]. Yu et al. reported that vaccination with DCs
pulsed by tumor lysate was safe and not associated with
any evidence of autoimmune disease [7]. Moreover, the me-
dian survival time of the treated patients was prolonged,
suggesting that DC-based immunotherapy had the poten-
tial to improve the prognosis of glioma. Nonetheless, the
immunogenicity of glioma antigens is generally weak, and
novel technology is urgently needed to boost the immune
reaction induced by glioma antigens.
Graphene oxide (GO), a nanomaterial first reported in

2004 [11], has attracted much attention because of its ap-
plication prospective in biomedical fields [12-15]. GO has
relatively large two-dimensional surfaces that can absorb
various bioactive molecules [16,17]. GO also possesses ex-
cellent capability for traversing the cell membrane and
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facilitating the cellular uptake of both small and macro-
molecules, with good biocompatibility, limited cytotox-
icity, and high loading ratio [12-14,17-19]. GO has been
evaluated as potential vehicles for the intracellular delivery
of various bioactive molecules, including genes and anti-
cancer drugs [12-14,17,18]. So far, however, no attempt
has been reported in literature to use GO for modulation
of anti-cancer immunity. Given the excellent features of
GO as a transporter of molecules across the cell mem-
brane [19], it will be interesting to study whether GO can
carry more glioma antigens into DCs and modulate the
DC-mediated anti-glioma immune reaction. In this work,
we explored whether GO would affect the immunogen-
icity of a known glioma peptide antigen (Ag). The peptide
antigen is from the protein survivin, which is commonly
expressed in human and murine malignant gliomas
[20-22]. We found that a mixture of GO and Ag (GO-Ag)
induced a more potent DC-mediated anti-glioma immune
reaction in vitro. The results indicate that GO-based
nanotechnology may have a prospective role in develop-
ment of more efficacious anti-cancer immunotherapies.

Methods
Cell lines and reagents
T98G is a glioblastoma cell line with documented over-
expression of survivin, with epitopes associated with hu-
man leukocyte antigen (HLA)-A2 [23]. T98G cells were
cultured in DMEM (Gibco, Life Technologies, Carlsbad,
CA, USA) supplemented with 10% heat-inactivated fetal
bovine serum (FBS; HyClone, Thermo Fisher Scientific,
Waltham, MA, USA). The HLA-A2-positive T2 cell line
was cultured in RPMI 1640 (Gibco, Life Technologies,
Carlsbad, CA, USA) supplemented with 10% FBS. The
two cell lines were maintained at 37°C in 5% CO2 with
media replaced two or three times per week. Recombin-
ant human granulocyte macrophage colony-stimulating
factor (rhGM-CSF) was purchased from Beijing Medical
University United Pharmaceutical Co., Ltd. (Beijing, China).
Recombinant human interleukin (rhIL)-4 and tumor necro-
sis factor (TNF)-alpha; fluorescein isothiocyanate (FITC)
mouse anti-human CD83, CD86, and HLA-DR; and
their respective isotype controls were purchased from
BD Pharmingen (San Jose, CA, USA).

Preparation and characterization of GO
GO was prepared by a modified Hummer's method [24].
Briefly, powder graphite (1,500 mesh, 10 g) and KMnO4

(120 g) were slowly mixed with concentrated H2SO4

(98%, 1 L) while maintaining vigorous agitation in an ice
bath. The ice bath was replaced with a water bath, and
the ingredients were agitated overnight. Distilled water
(2 L) was carefully and slowly added to the complex.
Next, 30% H2O2 was added to remove the residual po-
tassium permanganate when the mixture showed a gray-
black color. The bright yellow mixture was filtered and
washed with 10% HCl solution (2 L) twice. The filter
cake was dispersed in distilled water and centrifuged re-
peatedly for thorough washing. Finally, the paste at the
bottom of the centrifuge tube was carefully collected
and dispersed in distilled water as the stock solution
(about 2 mg/mL). In order to obtain nanosized GO, the
stock solution was probe-sonicated at 500 W for 2 h and
the GO nanosheets were separated via centrifugation
(50,000 g, 1 h). The deposit was then collected and dis-
persed as the nanosized GO solution.
Characterization of GO nanosheets was achieved with

atomic force microscopy. The morphology of the nanosheets
was revealed using Dimension 3100 (Veeco, Plainview,
NY, USA) atomic force microscope with a typical silicon
tip (Olympus, Shinjuku-ku, Japan) in tapping mode.

Peptides
The survivin peptide ELTLGEFLKL is a HLA-A2-
restricted peptide, which has been described previously
to induce HLA-A2-restricted T cell reactions [25,26].
The control peptide APDTRPAPG is also a HLA-A2-
binding peptide and thus can be presented by HLA-A2.
The peptides were synthesized by SBS Genetech Co.,
Ltd. (Beijing, China), and the purity was more than 95%.
The peptides were dissolved in DMSO (10 mg/mL) as
the stock solution and stored at −80°C. To prepare the
working solution, the stock solution was diluted in ster-
ile deionized water (1 mg/mL) and then stored at −20°C.

Loading peptide onto GO and evaluation of the loading
capacity
Loading peptides onto GO was accomplished by sonicat-
ing the GO suspension (10 μg/mL) with the peptide so-
lution at an equal volume ratio for 30 min. The complex
was shaken on a shaker at room temperature for 1 h.
A light-brown-colored homogeneous suspension was
formed and ready for further application. Peptide solu-
tion or GO suspension alone was also prepared in a
similar way to serve as controls. To determine the load-
ing rate of the peptide onto GO, the mixtures of GO
and peptide with different peptide/GO feed ratios (ran-
ging from 0.2 to 12.5) were prepared and centrifuged
at 12,000 rpm for 30 min. The deposits were further
washed with water and centrifuged twice. The superna-
tants were collected, and the amounts of peptides in the
supernatants were measured using a standard bicincho-
ninic acid (BCA) assay. The amount of complexed
peptide was calculated after deducting the amount of
peptide in the supernatant.

HLA typing
Peripheral blood was obtained from healthy human do-
nors. Genomic DNA was extracted and purified from
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whole blood or T98G cells using a DNA extraction kit
(Gene Tech, Shanghai, China) according to the manufac-
turer's protocol. DNA typing for HLA-A2 alleles was de-
termined by PCR using sequence-specific primers and
sequence-based typing as reported before [27]. The
primers (Invitrogen, Life Technologies, Carlsbad, CA,
USA) were as follows:

� Forward primer: 5′-CACTCCTCGTCCCCAGGCTGT-3′
� Reverse primer: 5′-CGTGGCCCCTGGTACCCGT-3′

The thermal profile was 94°C for 10 min, followed by
33 cycles of 94°C for 50 s, 66°C for 50 s, and 72°C for
50 s, and then 72°C for 10 min.

DC culturing and antigen pulsing
Peripheral blood mononuclear cells (PBMCs) of HLA-
A2-positive healthy human donors were isolated by
standard Ficoll gradient centrifugation of heparinized
blood, washed with D-Hank's solution, and divided into
two parts. One half of PBMCs were used for DC culture,
and the other half were frozen until they were used as
effector cell production in later experiments. For DC
culturing, PBMCs were suspended in RPMI 1640 with
10% FBS and adhered in culture flasks for 2 to 4 h at 37°C
in a 5% CO2 incubator. Non-adherent cells were removed
by washing, and the remaining adherent cells were
cultured in RPMI 1640 with 10% FBS supplemented
with recombinant human GM-CSF (1,000 IU/mL) and
IL-4 (20 ng/mL) for 5 to 6 days. Then, immature DCs
were harvested and pulsed with GO (0.1 μg/mL), Ag (1,
5, or 10 μg/mL), or GO-Ag complex (GO-Ag; 1, 5, or
10 μg/mL) for 2 h. In the control group, DCs were pulsed
with D-Hank's buffer only. After that, DCs were washed
with D-Hank's buffer and harvested for further studies.

Immune response against glioma cells
The in vitro evaluation of DC-mediated anti-tumor re-
sponse was performed as previously described [28].
Briefly, GO-, Ag-, or GO-Ag-pulsed DCs (1 × 105/well)
were co-cultured with syngeneic PBMCs (2 × 106/well)
in 24-well plates for 5 days in the presence of TNF-
alpha (20 ng/mL, BD Pharmingen, San Jose, CA, USA).
On day 3, the culture media were replaced and rhIL-2
(10 IU/mL) was added. After 5 days, PBMCs were col-
lected as effector cells for anti-tumor immune response
study. Firstly, T98G cells (target cells) were added to
96-well U-bottom plates at a density of 3 to 5 × 103/well
for 2 to 4 h to become adherent. Then, the effector cells
and target T98G cells were mixed in the 96 wells at
an effector-to-target ratio (E:T) ratio of 20:1. The back-
ground control wells contained only medium, while the
positive control contained only the target cells and
medium without the effector cells. Six wells were used
for each group. After co-incubation with target cells in
a 5% CO2 incubator at 37°C for 2 to 3 days, PBMCs
were removed and the plates were washed twice with
D-Hank's solution. The tumor inhibition rate was then
measured using a standard MTS assay according to the
manufacturer's (Promega, Madison, WI, USA) instruc-
tion (n = 6). An MTS/PMS mixture of 20 μL was added
into each well of the 96-well plate, followed by incuba-
tion for about 2 h at 37°C. When the color of the culture
media turned brown, the plates were measured for light
absorption by an enzyme-linked immunosorbent assay
(ELISA) plate reader at 490 nm. The percentage of
tumor growth inhibition was calculated according to the
following equation (A490 indicates the light absorption at
490 nm):

%Growth inhibition rate ¼ 1−
A490Experimental well

−A490Background

A490Positive well
−A490Background

" #

�100

ELISA for IFN-γ detection
DCs were pulsed with GO (0.1 μg/mL), Ag (5 μg/mL), or
GO-Ag (5 μg/mL) for 2 h and washed by D-Hank's solu-
tion. Then, syngeneic PBMCs were added and incubated
with DCs for 3 days. The supernatants of the culture were
collected and measured for interferon gamma (IFN-γ) with
an IFN-γ ELISA kit (Dakewe Biotech Company, Shenzhen,
China) according to the manufacturer's protocol (n = 6).

Peptide-specific immune response
Peptide-specific immune response study was evaluated
using a non-radioactive cytotoxicity assay kit (Promega,
Madison, WI, USA) and the HLA-A2-expressing T2 cell
line. T2 is a hybrid B-T lymphoblastic cell line as a typ-
ical model system for studying class I antigen presenta-
tion and peptide-specific cytotoxicity study [29]. PBMCs
were co-incubated with GO-Ag (5 μg/mL)-pulsed DCs
for 5 days as described above. The PBMCs were washed
and used as effector cells. T2 cells (2 × 105 cells/well)
were loaded with Ag (5 μg/mL) or the control peptide
(5 μg/mL) overnight and washed to serve as target cells.
The effector and target cells were then co-incubated at
designated E:T ratios in 96-well plates for 4 h at 37°C in
5% CO2. The peptide-specific immune-mediated lysis of
the cells was measured by testing lactate dehydrogenase
(LDH) release in the supernatant per manufacturer's in-
struction (n = 6).

Flow cytometric analysis
The phenotype of DCs after stimulation was assessed
by studying the expression of cell surface markers. DCs
were pulsed with GO (0.1 μg/mL), Ag (5 μg/mL), or
GO-Ag (5 μg/mL) for 2 h, washed, and incubated
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overnight at 37°C in a 5% CO2 incubator. DCs were then
collected and suspended in cold staining buffer (PBS
containing 1% FCS, 0.1 mL) in microcentrifuge tubes.
Afterwards, 20 μL of FITC-labeled anti-CD83, CD86,
and HLA-DR monoclone antibodies (BD Pharmingen,
San Jose, CA, USA) were added and incubated with DCs
for 30 min at 4°C. The DCs were washed again with cold
staining buffer for three times, and the cell surface
markers were analyzed by flow cytometry.
Figure 1 Characterization of GO nanosheets and their antigen loadin
deposited on mica (top) and the height profile along the black line (bottom
GO. (C) Loading rates of Ag on GO at various peptide/GO feed ratios.
Cellular viability study
The influence of GO on DC viability was checked with a
standard MTS cell viability assay according to the manu-
facturer's direction. Briefly, DCs were treated with GO
(0.1 μg/mL) or D-Hank's solution in 24-well plates for
2 h at 37°C in 5% CO2, washed thoroughly, and then
added into 96-well plates with a density of 1 × 104/well.
After 1, 4, and 24 h of incubation, the viability of DCs
was evaluated with the MTS cell viability assay (n = 6).
g capability. (A) AFM topographic image of nanosized GO sheets
). Scale bar is 500 nm. (B) Distributions of size and zeta potential of
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Statistical analysis
Statistical difference was determined by Student's t test, and
a value of p < 0.05 was considered statistically significant.

Results
GO was prepared from natural graphite by a modified
Hummer's method [24]. In order to get exfoliated single-
layer nanosized GO, the GO solution was further proc-
essed and cracked by ultrasonication. The GO nanosheets
were next collected via centrifugation at 50,000 g and dis-
persed in water as the stock solution. Atomic force mi-
croscopy (AFM) characterization (Figure 1A) provided
morphological information of the GO nanosheets. The
height profile showed that the thickness of GO nanosheets
was around 1.1 nm (Figure 1A), indicating single-layer
nanosheets. Moreover, the lateral size of GO nanosheets
was about 60 to 360 nm, with an average dimension of
140 nm. The GO was negatively charged with an average
zeta potential of −28 mV (Figure 1B). The GO solutions
were used without further treatments in the following
experiments.
To induce a specific anti-glioma immune response, DCs

must be exposed to glioma antigens. The antigen used in
the study was a peptide (ELTLGEFLKL, termed Ag) from
the protein survivin, which is widely expressed in malig-
nant gliomas [20-22]. Survivin is a member of the inhibi-
tor of apoptosis (IAP) protein family, which can regulate
two important cellular processes: it inhibits apoptosis and
promotes cell proliferation. Hence, survivin expression
is generally associated with poor prognosis [30,31]. The
peptide ELTLGEFLKL can bind to HLA-A*0201, the
most common human leukocyte antigen (HLA) serotype,
and stimulate DCs to generate CD8+ immune responses
Figure 2 Schematic representation of the steps involved in DC-media
against glioma cells [20-22,26]. Thus, the peptide was
adopted in this study, mixed with GO at various feed ratios,
and evaluated for its capability to induce a DC-mediated
anti-glioma immune response.
The amount of Ag loaded on GO nanosheets was

assessed in this study. The Ag/GO feed ratios varied from
0.2 to 12.5. The Ag peptide and GO nanosheets were
mixed under sonication for 30 min and then shaken for
an additional hour. The mixtures were centrifuged and
washed twice. The peptide amount in the supernatants
was measured using a standard bicinchoninic acid (BCA)
assay. As shown in Figure 1C, the amount of the Ag pep-
tides that were loaded onto 1 μg GO increased from
0.18 μg to nearly 1 μg with increasing Ag/GO feed ratios.
At the Ag/GO feed ratio of 3:1, the amount of peptide
loaded on GO saturated at about 1 μg/1 μg.
We next evaluated whether GO would modulate the

immunogenicity of the peptide antigen. The schematic
representation of the steps involved is shown in Figure 2.
A fixed concentration of GO (0.1 μg/mL) was mixed
with Ag of various concentrations in the following ex-
periments. The DCs were pulsed for 2 h with GO, Ag,
or GO-Ag and co-incubated for 3 days with cognate per-
ipheral blood mononuclear cells (PBMCs; serving as the
effector cells), at the effector-to-target ratio (E:T) of
20:1. The PBMCs were subsequently co-incubated with
the target glioma cells (T98G, human glioma cell line)
for two more days, and the anti-glioma immune response
was evaluated with a standard MTS assay [32]. The results
were presented in Figure 3A. First, Ag-treated DC induced
a higher anti-tumor response compared to un-pulsed
DCs. For DCs pulsed with 1, 5, and 10 μg/mL of Ag, the
corresponding tumor inhibition was 22%, 30.5%, and 21%,
ted anti-tumor immune response.



Figure 4 Antigen-specific immune lysis of the target cells.
PBMCs were pretreated with un-pulsed DCs or GO-Ag-pulsed DCs.
The treated PBMCs were co-incubated with either the Ag-loaded T2
cells (A) or the control peptide-loaded T2 cells (B) (mean ± std, n = 6).
The stars indicate statistically significant differences between the groups.

Figure 3 In vitro evaluation of the DC-mediated anti-tumor
immune response. DCs were treated with saline, GO, Ag, or GO-Ag.
Treated DCs were mixed with PBMCs, which in turn were mixed
with the target cells (T98G human glioma cell line) to elicit immune
response. (A) Immune inhibition of glioma cells induced by un-pulsed,
GO-pulsed, Ag-pulsed, or GO-Ag-pulsed DCs (mean ± standard
deviation (std), n = 6). (B) IFN-γ secretion induced by un-pulsed,
GO-pulsed, Ag-pulsed, or GO-Ag-pulsed DCs (mean ± std, n = 6).
The stars indicate statistically significant differences among the groups.
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respectively. As a comparison, the inhibition induced by
un-pulsed DCs was only 11.5%. Second, GO-Ag-treated
DCs induced a significantly higher glioma inhibition com-
pared to either Ag-treated or GO-treated DCs (Figure 3A,
p < 0.05). For DCs treated with 1, 5, and 10 μg/mL of Ag
mixed with GO, the corresponding inhibition rate was
39.5%, 46.5%, and 44.5%, respectively. It should be noted
that 5 μg/mL of Ag triggered the highest anti-glioma re-
sponse compared to the other concentrations, indicating
that a proper amount of Ag was required for optimized
anti-glioma reactions. As a result, in the following ex-
periments, we used 5 μg/mL of Ag or GO-Ag to stimu-
late the DCs.
To verify the results of the above immune study, IFN-γ

secretion was also measured in this work. IFN-γ is pro-
duced predominantly by T lymphocytes and plays a critical
role in anti-tumor immunity. Hence, IFN-γ is commonly
used as a surrogate indicator of anti-cancer immune re-
sponses [26]. DCs were pulsed and co-incubated with
cognate PBMCs as described above. The IFN-γ in the
supernatant was measured with standard ELISA. As shown
in Figure 3B, GO-Ag treatment resulted in a significantly
higher production of IFN-γ, again indicating that GO-Ag
could trigger a more potent anti-glioma immune response
compared with free Ag or GO alone.
The specificity of DC-mediated anti-cancer immune re-

sponse is important due to concerns about autoimmune
diseases. To evaluate whether the GO-Ag-enhanced im-
munity was specific for the Ag, DCs were pretreated with
GO-Ag and co-incubated with PBMCs. The PBMCs were
subsequently mixed with two types of target cells, T2 cells
loaded with the Ag peptide (Ag-T2 cells) or T2 cells
loaded with the control peptide APDTRPAPG (Control-
T2 cells). Because T2 cells express HLA-A2 that can bind
with the HLA-A2-restricted peptide, they are commonly
used as model target cells for studying peptide-specific
immune response [29]. Figure 4 reveals the immune study
results. While GO-Ag significantly enhanced the immune
response against Ag-T2 cells (Figure 4A), its effects on
Control-T2 cells were minimal (Figure 4B). It could be de-
duced that, owing to the absence of Ag on the surfaces of
Control-T2 cells, GO-Ag did not enhance the immunity
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against these cells. Thus, the GO-Ag-enhanced immunity
was relatively specific towards the target cells carrying the
Ag (survivin peptide) on the cell surface.
The above results showed that GO could enhance the

DC-mediated anti-glioma immunity. To explore the feasi-
bility of using GO as an immune modulator in biomedical
applications, it is important to investigate whether GO will
affect the maturation and the viability of DCs. It is well
known that DCs express multiple surface phenotype
markers which are closely related to DCs' functions and
maturation process [6,33,34]. In this work, we treated
immature DCs with GO, Ag, or GO-Ag for 2 days and
evaluated the expression of CD83, CD86, and HLA-DR
Figure 5 Phenotype and cellular viability studies of the DCs after sti
HLA-DR expression on DCs treated with GO, Ag, or GO-Ag. (B) Viability o
(mean ± std, n = 6).
on the DCs with antibodies and flow cytometry. Com-
pared with the control, there was no significant differ-
ence in histogram profiles for DCs treated with GO,
Ag, or GO-Ag (Figure 5A). The results suggested that
GO or GO-Ag did not exert obvious adverse effects on
the DC's maturation process. Next, we evaluated the
toxicity of GO on human DCs. GO (0.1 μg/mL) were
incubated with DCs for up to 24 h, and the viability of
the cells was evaluated by the standard MTS assay. The
results revealed no significant difference in the num-
bers of live cells between the GO-treated and control
groups (Figure 5B). The data indicated that GO at the
low concentration exhibited negligible toxicity against
mulation. (A) Flow cytometry evaluation of CD86, CD83, and
f DCs after being treated with 0.1 μg/mL of GO for 1, 4, or 24 h
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DCs, a result consistent with former toxicity studies of
GO on Hela cells [35].

Discussion
The aim of the study was to investigate whether a two-
dimensional nanomaterial, GO, could be utilized to mo-
dulate DC-mediated anti-glioma immune reactions. The
results showed that pulsing DCs with free Ag generated a
limited anti-glioma response compared to un-pulsed DCs
(Figure 3A). Pulsing DCs with GO alone failed to produce
obvious modulation effects. However, stimulating DCs
with GO-Ag significantly enhanced the anti-glioma im-
mune reaction (p < 0.05), a finding that was further veri-
fied with the IFN-γ secretion experiments (Figure 3B). In
addition, the enhanced immune response appeared to be
relatively specific towards the target cells carrying the Ag
peptide (Figure 4). Furthermore, at the concentration used
in this study, GO exerted minimal toxicity to the DCs
(Figure 5). These data suggested that GO might have ap-
plication potential for enhancing the DC-mediated im-
mune reactions against glioma cells.
The mechanisms of the observed immune enhance-

ment are unclear at this stage. One hypothesis is that
GO may serve as an immune adjuvant, which can acti-
vate the DCs and induce a more potent immune re-
sponse. However, the data of this study showed that GO
alone did not generate significant immune modulatory
effects, a behavior inconsistent with most immune adju-
vants (Figure 3A). Another possible mechanism is that
GO may function as a carrier of the antigens for cross-
ing the cell membrane [36] and thus bring more antigen
into the DCs. Presumably more glioma antigens will be
processed within the DCs, leading to an improved DC-
mediated anti-glioma response. Obviously, extensive
future studies are still warranted to unveil the immune-
modulating mechanisms of GO.
The GO concentration used in this study was 0.1 μg/mL.

At this concentration, we did not detect obvious GO tox-
icity against the DCs. This result was in agreement with
prior toxicity studies of GO on Hela cells [35]. Interest-
ingly, a recent study reported that high dosage of GO of 1
to 25 μg/mL suppressed antigen presentation in DCs and
down-regulated the ability of DCs to activate antigen-
specific T lymphocytes [37]. In comparison, the concentra-
tion of GO was orders of magnitude lower in our study,
and the GO nanosheets were complexed with the antigens
before interacting with the DCs. These differences high-
light the importance of dosage and procedure of using
GO, in that very different biological effects of GO may be
generated depending on the experimental conditions.

Conclusions
In summary, we observed that GO-Ag enhanced the DC-
mediated anti-glioma immune response in vitro. Moreover,
the immune response induced by GO-Ag appeared to
be target-specific. Additionally, GO did not affect the
viability or the phenotype of the DCs under our experi-
mental conditions. These results indicated that GO might
have potential utility for modulating DC-mediated anti-
glioma immune reactions.
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