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Abstract

Selective area growth of ZnO nanorods is accomplished on microgap electrodes (spacing of 6 μm) by using a
facile wet chemical etching process. The growth of ZnO nanorods on a selected area of microgap electrode is
carried out by hydrothermal synthesis forming nanorod bridge between two electrodes. This is an attractive,
genuine, direct, and highly reproducible technique to grow nanowire/nanorod onto the electrodes on selected
area. The ZnO nanorods were grown at 90°C on the pre-patterned electrode system without destroying the
electrode surface structure interface and geometry. The ZnO nanorods were tested for their application in
ultraviolet (UV) sensors. The photocurrent-to-dark (Iph/Id) ratio was 3.11. At an applied voltage of 5 V, the
response and recovery time was 72 and 110 s, respectively, and the response reached 2 A/W. The deposited
ZnO nanorods exhibited a UV photoresponse that is promising for future cost-effective and low-power electronic
UV-sensing applications.
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Background
Metal-oxide-semiconductor nanostructures have received
considerable attention worldwide because of their excellent
physical and chemical properties in the recent past [1].
Among them, zinc oxide (ZnO) nanostructures have
attracted significant interest because of their large wide
direct bandgap (Eg = 3.37 eV) [2] and high exciton binding
energy (60 meV) [2-4]. Ultraviolet (UV) photodetectors
are widely used in various commercial [5] and military
applications [6], such as secure space-to-space commu-
nications [7], pollution monitoring, water sterilization,
flame sensing, and early missile plume detection [8].
Moreover, the direct flow of electrons contributes to the
maximum photocurrent generation because of the large
interfacial surface area [9]. In contrast to GaN, ZnO has a
maximum electron saturation velocity; thus, photodetectors
equipped with ZnO can perform at a maximum operation
speed [10]. Different types of photosensors, such as p-n
junction, metal–semiconductor-metal, and Schottky diodes,
have been fabricated. However, metal–semiconductor-metal
photosensors are becoming popular because of their simple
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structure [11]. The sensor photoconductivity of ZnO
depends on the growth condition, the surface morphology,
and crystal quality [12].
The synthesis of ZnO nanostructures has been reported;

however, the area-selective deposition of ZnO nano-
structures or their integration into complex architectures
(microgap electrode) is rarely reported [13-24]. In this
manuscript, we report the deposition of ZnO nanorods
on a selective area of microgap electrodes through simple
low-cost, highly reproducible hydrothermal technique, and
their applications in UV sensors were investigated.

Methods
Materials and method
The UV sensor was fabricated with Schottky contacts by
conventional photolithography followed by wet etching
technique. ZnO nanorods were grown on the electrode
by hydrothermal process. The p-type (100) silicon substrate
was cleaned with RCA1 and RCA2 [25] to remove the
contaminants. The RCA1 solution was prepared by mix-
ing DI water, ammonium hydroxide (NH4OH (27%)),
and hydrogen peroxide (H2O2 (30%)) by maintaining the
ratio of 5:1:1. For the RCA2 preparation, hydrochloric acid
(HCL (27%)) and H2O2 (30%) were mixed in DI water by
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maintaining the composition at 6:1:1. An oxide layer with
a thickness of approximately 1 μm was then deposited
by wet oxidation process. Thin layers of titanium (Ti)
(30 nm) and gold (Au) (150 nm) were deposited using a
thermal evaporator. As shown in Figure 1b, a zero-gap
chrome mask was used in the butterfly topology. After
UV exposure, controlled resist development process
was performed to obtain a 6-μm gap. The seed solution
was prepared as described in our previous research [25].
The concentration of zinc acetate dehydrate was 0.35 M
in 2-methoxyethanol. Monoethanolamine (MEA) was
added dropwise to the seed solution, which was heated
to 60°C with vigorous stirring until the molar ratio of
MEA to zinc acetate dehydrate reached 1:1. The seed
solution was incubated at 60°C for 2 h with continuous
stirring. The measured pH value for the MEA-based
seed solution was 7.69. The aged solution was dropped
onto the surface of the microgap structure, which was
rotated at 3,000 rpm for 45 s. After deposition via spin
coating, the films were dried at 300°C for 15 min to
evaporate the solvent and remove the organic residuals.
The spin coating procedure was repeated five times.
The films were then inserted into the furnace and
annealed at 400°C for 1 h in air. The growth solution was
prepared by mixing equimolar ratio zinc nitrate hexahy-
drate (0.025 M) and hexamethylenetetramine (0.025 M)
in 150 mL of deionized (DI) water. The growth solution
was transferred to a 250-mL beaker with vigorous stir-
ring for 20 min. The pre-coated substrates were then
horizontally immersed inside the beaker containing the
growth precursors. The beaker was directly inserted in a
preheated oven at 90°C for 6 h to induce the growth of
nanorods. After the growth induction time, the oven
was cooled down to room temperature. The substrate
was washed with DI water to remove any residual salt
and dried in nitrogen atmosphere. The aspect ratio of
Figure 1 The entire experimental process and the butterfly topology
entire experimental process and the (b) butterfly topology zero-gap design
the ZnO nanorods depends on the reaction time. The
length of the nanorods considerably increased with longer
reaction times; however, the diameter of the nanorods
only grew slightly. Figure 2a,b,c shows the SEM images
of the ZnO nanorods at different magnification powers
after 6 h of reaction time.

Results and discussion
The X-ray diffraction (XRD) spectrum of the ZnO nano-
rods calcinated at 400°C is shown in Figure 3. The peaks
indicate that the nanorods have a polycrystalline phase
with a preferential orientation along the c-axis, and that
the c-axis of the crystalline is uniformly perpendicular to
the substrate surface. The crystalline size at the (002) peak
was calculated using the Scherrer formula [26-28].
Figure 1a shows the schematic view of entire experi-

mental process. Figure 1b shows the butterfly topology
zero-gap chrome mask. Figure 2a,b,c shows high- and
low-magnification SEM micrographs of the deposited
ZnO nanorods. The SEM showed the morphological
features of the ZnO nanorods deposited on a selected
area of microgap electrodes. The seeded area was com-
pletely covered with ZnO nanorods which indicates
selective growth on the area of microgap electrodes. It
is noteworthy to mention that the as-grown ZnO nanorods
were interconnected to each other as noticeably seen
by the SEM observations [29-31]. Such interconnected
network facilitates electron transport along the nanorod/
nanowire axis [32,33].
Figure 4 demonstrates the current-to-voltage (I-V)

characterization of the area-selective deposited ZnO nano-
rods on the microgap electrodes. These I-V values were
recorded in the dark and with UV illumination. The I-V
curves show the Schottky behavior of Au on an n-type
ZnO contact. Such behavior corresponds to the large
leakage resistance and high quality of the contacts [34].
zero-gap design. (a) Schematic of the side and top views of the
printed on the chrome mask.



Figure 3 XRD spectrum of the ZnO nanorods.

Figure 4 I-V curves of the area-selective deposited ZnO nanorods
in dark and UV light environments.

Figure 2 SEM images of area-selective deposited ZnO nanorods
on microgap electrodes. The images are at different magnification
powers: (a) 50 μm, (b) 10 μm, and (c) 5 μm.
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The dark and photocurrent values were 7.35 and 22.89 μA,
respectively, which clearly indicate a threefold increase in
the dark current value.
The sensor mechanism is based on Equations (1) to (3)

[35,36]; the reactions on the ZnO nanorod surface during
UV illumination can be explained as follows: when the
adsorbed oxygen molecules capture the electron from the
conduction band, a negative space charge layer is created,
which results in enhanced resistivity [37].

O2 þ e−→O−
2 : ð1Þ

When the photon energy is greater than the bandgap
energy (Eg), the incident radiation is adsorbed in the
ZnO nanorod UV sensor, which results in electron–hole
pairs.

hv→ hþ þ e−: ð2Þ
The positively charge holes that were created due to

the photogeneration neutralize the chemisorbed oxygen
that was responsible for higher resistance that revealed
conductivity increment, and as a consequence, the photo-
current increases.

O−
2 þ hþ →O2;

where O2 is the oxygen molecule, e− is the free electron
and the photogenerated electron in the conduction band,
O−

2 is the adsorbed oxygen, hv is the photon energy of the
UV light, and h+ is the photogenerated hole in the valence
band. After the UV light is switched on, the number of
oxygen molecules on the ZnO nanorod surface rapidly
reaches the maximum value in response to the ultraviolet



Figure 6 I-t curve of the area-selective deposited ZnO nanorods
in dark and UV light environments.
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light [38]. When the ultraviolet light is switched off, the
oxygen molecules are reabsorbed on the ZnO nanorod
surface. Thus, the sensor reverts to its initial mode [39].
An important parameter used to evaluate the suitability

of the sensor for UV-sensing applications is spectral
responsivity as a function of different wavelengths. This
parameter yields the internal photoconductive gain.
Generally, the sensor responsivity can be calculated

as [40]

Ri ¼ ηg
qλ
hc

; ð4Þ

where λ, q, h, c, and η show the wavelength, electron
charge, Planck's constant, light velocity, external quantum
efficiency, and internal gain of the sensor. As shown in
Figure 5, the sensor responsivity shows a linear behavior
below the bandgap UV region (300 to 370 nm) and a
sharp cutoff with a decrease of two to three orders of
magnitude at approximately 370 nm. The maximum
responsivity of our sensor at an applied bias of 5 V was 2
A/W, which is higher than the values reported in the
literature [41-43].
Another important parameter for UV sensor is the

current-to-time (I-t) response in the switched on/off
states of UV light. Figure 6 shows the I-t response
curves at different voltages of area-selective deposited
ZnO nanorods on microgap electrodes with UV illu-
mination. The rise time was 72 s, whereas the decay
time was 110 s. We believe that such rise and decay
times observed in our photo response measurement
are caused by area-selective deposited ZnO nanorods
on the microgap electrodes. Also from the curves, it
can be revealed that the fabricated devices can be used
for low-power miniaturized devices with fast detection
capability and reproducibility.
Figure 5 Spectral responsivity of area-selective deposited ZnO
nanorods between the microgap electrodes.
Conclusions
In summary, the ZnO nanorods were selectively grown
on pre-patterned seeded substrates at low temperature
(90°C) by hydrothermal method. Conventional lithography
followed by simple wet etching process was used to define
microgap electrodes with approximate spacing of 6 μm on
seeded substrates. The ZnO nanorod microgap electrodes
were investigated in dark and UV environments and
showed noticeable changes with UV light exposure. The
sensor gain was 3.11. The response time was less than
72 s. The recovery time was 110 s. The responsivity was 2
A/W. These fascinating results propose that the selective
area growth of the ZnO nanorods exhibits a UV photo-
response that is promising for future cost-effective and
low-power electronic UV-sensor applications.
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