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Abstract

We report a novel epitaxial growth of EuTiO3 films on SrTiO3(001) substrate by hydrothermal method. The
morphological, structural, chemical, and magnetic properties of these epitaxial EuTiO3 films were examined by
scanning electron microscopy, transmission electron microscopy, high-resolution X-ray diffractometry, X-ray
photoelectron spectroscopy, and superconducting quantum interference device magnetometry, respectively.
As-grown EuTiO3 films with a perovskite structure were found to show an out-of-plane lattice shrinkage and
room-temperature ferromagnetism, possibly resulting from an existence of Eu3+. Postannealing at 1,000°C could
reduce the amount of Eu3+, relax the out-of-plane lattice shrinkage, and impact the magnetic properties of the films.
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Background
Interest in multiferroics has been recently revived, since
coexistence and interactions of ferroelectric, ferromag-
netic, and ferroelastic orderings in multiferroics [1-6]
could be applied potentially to a range of novel multi-
functional devices [6,7]. As one of the special multiferroic
materials, EuTiO3 was found that in the bulk exhibits a G-
type antiferromagnetic ordering below 5.3 K [8,9], and its
epitaxial films transform into ferromagnetic under large
enough lattice strain [10-13].
A variety of techniques are available to grow fine epitax-

ial perovskite films, such as pulsed laser deposition [11],
molecular beam epitaxy [12], radio-frequency magnetron
sputtering [14], and metal-organic chemical vapor depo-
sition [15]. These methods share a common feature that
high growth temperatures (> 500°C) and costly equip-
ments are usually necessary. In contrast, an attractive
alternative technique for preparing epitaxial perovskite
films is hydrothermal epitaxy [16-20], which allows direct
deposition crystalline films using mild aqueous solutions
at temperatures as low as 150°C [16,18] and avoids the
research dependence on the costly aforementioned epi-
taxial growth equipments. In consideration of the merits
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of the hydrothermal epitaxy, however, nothing is cur-
rently known about the hydrothermal growth of epitaxial
EuTiO3 films and their properties.
In this paper, we report the hydrothermal epitaxy of

EuTiO3 films on SrTiO3(001) substrate at 150°C and the
properties of the films. We find that the as-grown epitax-
ial EuTiO3 films show an out-of-plane lattice shrinkage
and room-temperature ferromagnetism. Postannealing at
1,000°C evidences that this lattice shrinkage relates to the
instabilities of Eu oxidation state in the films.

Methods
The heteroepitaxial EuTiO3 films investigated were grown
on SrTiO3(001) substrate by hydrothermal method. Prior
to growth, a solution of KOH (10 M, 15 mL) was added
into a suspension which was composed of TiO2 (0.2 g),
Eu(NO3)3 · xH2O (1.0 g) and H2O (50 mL) with a sub-
sequent constant stirring for 30 min. The resulting solu-
tion was then introduced into a 100-mL Teflon-lined
stainless autoclave with a fill factor of 65%, where the
SrTiO3(001) substrate was fixed inside. The autoclave was
shifted to a preheated oven holding at 150°C. After 24 h
of growth, the sample was removed from the autoclave,
cleaned by deionized water, and then dried ready in the
air for the subsequent measurements. The phase struc-
ture of the films was assessed by high-resolution X-ray
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diffractometry (HRXRD; Bede D1, Durham, UK). HRXRD
longitudinal ω-2θ scans were recorded with an analyzer
composed of Ge channel-cut crystals, while a pole figure
was taken in skew geometry and with open detector. To
assess the morphology and microstructure of the films,
the samples were cleaved into smaller pieces for inves-
tigation by scanning electron microscopy (SEM; Hitachi
S-4800, Chiyoda-ku, Tokyo, Japan) and transmission elec-
tron microscopy (TEM; TecnaiTMG2F30, FEI, Hillsboro,
OR, USA), the latter through the standard mechanical
thinning and ion-milling processes. The elemental com-
position of the films was analyzed by X-ray photoelectron
spectroscopy (XPS; Kratos AXIS UltraDLD, Manchester,
UK). The absence of water or hydroxyl in the films was
evidenced by Fourier transform infrared spectroscopy
(FTIR; Nexus870, Nicolet, Madison, WI, USA). The mag-
netic properties of the as-grown and annealed samples
were measured in a superconducting quantum interfer-
ence device magnetometry (SQUID). All magnetization
data presented here are corrected for the diamagnetic
background of the substrate. Postannealing of the as-
grown sample was carried out in an Ar ambient for 10 h at
1,000°C.

Results and discussion
Most remarkable is the peculiar morphology observed by
SEM from which a sequential growth of the films is pro-
posed. Figure 1a,b,c,d,e displays the SEM images taken
in the top view of one sample with surface graded from
edge to center and the typical morphology of epitaxi-
ally overgrown and coalesced EuTiO3 films. Note that
the surface area of the SrTiO3(001) substrate we used
for growth is 5 × 5 mm2. We may indirectly visualize
the growth evolution of the EuTiO3 films from the spa-
cial morphological nonuniformity. As shown in Figure 1a,
the existence of side facets observed at the top of micro-
crystals reveals an initial nucleation growth in cross-like
shape. The nucleation then processes from cross-shaped
into tetragonal and after that into cuboidal. Accompany-
ing the coalescence of cuboid in the first layer, nucleation
on the second layer starts and develops, as shown in
Figure 1b. Figure 1c,d clearly reveals the coalescence pro-
cess of the micro-crystals on the second layer. A crisscross
consisting of dense crosses shown in Figure 1c forms
to coalesce the side facets of conjoined micro-crystals.
Figure 1d shows coalescence of the crisscross on top of
layers. The complete coalescence of the crisscross results
in a great smooth surface of the films shown in Figure 1e.
Interestingly, the crosses and the micron-sized tetragon
develop regularly and orient highly, which reveals that
the films are highly oriented and suggests a tetragonal
structure of the film. This indication is evidenced by the
following TEM and HRXRD results. Figure 1f shows a
cross-sectional SEM image taken on an arbitrary portion

Figure 1 Top-view and side-view SEM images. Bird’s-eye view
from the (a) edge, (b) near-edge, (c)middle-of-edge-and-center, (d)
near-center, and (e) center of one sample surface. Note that the
surface area of the SrTiO3(001) substrate is 5 × 5 mm2. (f)
Cross-sectional SEM image taken in an arbitrary portion of the sample.

of the sample. A layer with a uniform thickness of about
600 nm is clearly observed.
To directly investigate this peculiar epitaxial growth

of the EuTiO3/SrTiO3(001) structure, the interface of
the structure was examined by TEM. Figure 2a shows
a cross-sectional high-resolution transmission electron
micrograph of the EuTiO3/SrTiO3(001) interface along
the SrTiO3[1̄00] zone axis. The lattice planes of the
EuTiO3 film are clearly resolved and are found to be
well ordered. Consecutive lattice planes at the interface
between the film and the substrate is clear, which pre-
cisely and directly evidences a well epitaxial relationship
between the deposited film and the substrate, although
there might be few dislocations in the interface to release
the internal stress due to slight lattice mismatch. The
insets in Figure 2a show the high-resolution micrographs
of the EuTiO3 films and SrTiO3 substrate taken in focus,
respectively. Selected area electron diffraction (SAED)
patterns of the films and substrate were also taken and
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Figure 2 High-resolution transmission electronmicrographs and
selected area electron diffraction patterns. (a) Cross-sectional
high-resolution transmission electron micrograph of the
EuTiO3/SrTiO3(001) interface along the SrTiO3[1̄00] zone axis. The
insets show the high-resolution micrographs of the EuTiO3 films and
SrTiO3 substrate taken in focus, respectively. Selected area electron
diffraction patterns of (b) EuTiO3 and (c) SrTiO3, respectively.

are shown in Figure 2b,c, respectively. Both SAED pat-
terns depict the identical crystallographic structure and
indicate their epitaxial orientations with small lattice mis-
fit and a highly oriented tetragonal structure of the film,
which leads to a tetragonal surface morphology generally
presented in nucleation developing stage, as shown in the
aforementioned SEM images.
To investigate the crystallographic uniformity of this

epitaxial growth, the EuTiO3/SrTiO3(001) structure was
assessed by HRXRD. Both EuTiO3 and SrTiO3 were
reported to have the cubic perovskite crystal structure
at room temperature and have a lattice constant of
0.3905 nm [21], indicating zero lattice mismatch between
EuTiO3 and SrTiO3. Figure 3a shows symmetric HRXRD
longitudinal ω-2θ scans taken within a 2θ range from 10°
to 110° for the as-grown and postannealed samples. Apart
from the (00l) (l = 1, 2, 3, and 4) reflections of SrTiO3,
the (00l) reflections of EuTiO3 for the as-grown sample
can be identified and no reflections pertinent to a sec-
ondary phase can be found, indicating that the epitaxial
growth of EuTiO3 is oriented along the c-axis. The out-
of-plane lattice constant of the as-grown films calculated
from the (001), (002), and (004) peaks are 0.3789, 0.3821,
and 0.3831 nm, respectively. They are much smaller than
the reported value of 0.3905 nm for bulk EuTiO3 [22,23]
and show an out-of-plane lattice shrinkage of 2.9%, 2.1%,
and 1.9%, respectively. The average shrinkage is 2.3%,
whichmeans that the out-of-plane lattice shrinks by about
2.3% along the c-axis. The in-plane epitaxial relation-
ship between the films and the substrate was measured

Figure 3 HRXRD longitudinal scans and XRD pole figure. (a)
Symmetric HRXRD longitudinal ω-2θ scans of the as-grown and
postannealed EuTiO3 films on SrTiO3(001) substrate. (b) XRD {211}
pole figure of the as-grown sample.

by azimuthal scans in skew geometry. Figure 3b shows
an XRD {211} pole figure of the as-grown sample mea-
sured by setting 2θ = 57.92°. The reflections from
EuTiO3 and SrTiO3 overlap in every streak measured
by an azimuthal and sample-tilting angular scans. The
in-plane fourfold symmetry of the EuTiO3/SrTiO3 ori-
entation relationship is revealed by the four streaks in
the pole figure, which shows an in-plane orientation rela-
tionship of EuTiO3〈100〉‖SrTiO3〈100〉. Evidently, the pole
figure provides the same qualitative information as the
SAED patterns, in that it reveals a fourfold symmetry and
an excellent in-plane alignment of the EuTiO3 films and
SrTiO3 substrate. Postannealing of the as-grown sample
was carried out in an Ar ambient for 10 h at 1,000°C
in order to compare the result with the report where
the epitaxial EuTiO3 films were prepared by pulsed laser
deposition [11]. Upon postannealing, symmetric HRXRD
longitudinal ω-2θ scans display that the EuTiO3 peaks
shift toward lower angles and are superimposed on the
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SrTiO3 peaks without yielding any impurity phases, as
shown in Figure 3a. It means that the out-of-plane lattice
shrinkage of the as-grown films was relaxed by postan-
nealing, possibly corresponding to the changes of oxida-
tion state in Eu surroundings. It is reported that valence
instabilities are an interesting and general phenomenon
for rare earth ions in their compounds, for example, mixed
valences, valence fluctuations, and surface valence transi-
tions [24-27]. Our present work provides an opportunity
to study further valence instabilities of Eu in EuTiO3 and
their resultant properties.
The elemental composition of the films was then ana-

lyzed by XPS, which was taken within a binding energy
scan range from 0 to 1,300 eV. No signals pertinent to
K+ cation can be found, indicating that the films have no
incorporation of K from the solvent. The Eu 3d and Ti 2p
core-level XPS spectra of the as-grown sample are shown
in Figure 4a,b, respectively. The results clearly exhibit that
the as-grown sample consists of mixed Eu2+, Eu3+, and
Ti4+ cations, in agreement with the peak positions of
the cations shown in the XPS spectra from other studies
[25-29]. The presence of Eu3+ indicates the necessity of
anion excess in the as-grown films for charge balance and

Figure 4 XPS spectra of the as-grown and postannealed
samples. (a) A comparison of the Eu 3d core-level XPS spectra
between the as-grown and postannealed samples. (b) Ti 2p
core-level XPS spectra of the as-grown and postannealed samples.

may affect the crystal lattice and magnetic properties of
the films, which will be discussed later on. The Eu 3d core-
level XPS spectra of the annealed sample are shown in
Figure 4a, which reveals a reduction of Eu3+ quantity. The
Ti 2p core-level XPS spectra of the annealed sample not
only are dominated by the Ti4+ contribution but also plau-
sibly exhibit the Ti3+ shoulders, as shown in Figure 4b.
These results reflect a necessity to lose part of the ionic
charge during the annealing process for charge compen-
sation. Further investigations are necessary to understand
the chemical details of the films and annealing process.
It is important to realize the possible inclusion of water

or hydroxyl in the as-grown films. Such issues have been
reported in various perovskites prepared hydrothermally
[30-32]. These impurities can contribute to charge bal-
ance in the as-prepared perovskites and be removed by
annealing to produce defects, which when coupled with a
metal can account for charge compensation [30,31]. Thus,
our films were studied by FTIR. Figure 5 shows the FTIR
spectra of the as-grown and postannealed samples for
a comparison. No peaks pertinent to water or hydroxyl
can be seen and resolved from the spectra; hence, the
presence of water or hydroxyl and their resultant charge
balance/compensation mechanisms are excluded in our
films. The charge balance (compensation) in our as-grown
(annealed) films is possibly made by oxygen excess (loss).
Finally, we are interested in the magnetic properties

of these films. The in-plane hysteresis loops for the as-
grown films shown in Figure 6a were measured by SQUID
with the magnetic field (H) parallel to the EuTiO3[100]
direction at 300 K. The as-grown EuTiO3 films exhibit
a ferromagnetic-like behavior. To quantitatively show the
impact of the postannealing on its magnetic properties,

Figure 5 FTIR spectra of the as-grown and postannealed
samples. The peak at 2,360.39 cm−1 is due to contributions from
CO2 present in air.
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Figure 6 Hysteresis loops and temperature dependence of
magnetization. (a) Hysteresis loops obtained at 300 and 2 K for the
as-grown and annealed films with external field applied parallel to
EuTiO3[100] direction. The inset magnifies the low magnetic field
range. (b) Temperature dependence of the magnetization curves of
the as-grown and annealed films at 1,000 Oe and 20 kOe external
fields applied parallel to EuTiO3[100] direction.

the same piece of the sample after annealing was mea-
sured by SQUID to avoid errors from sample volume
measurements. A striking decrease of MS and a negli-
gible ferromagnetic behavior for the annealed films are
found and shown in Figure 6a. These results indicate that
the oxidation states of Eu in the as-grown films provides
magnetic moments and contributes to the magnetization.
In order to get more information about the magnetism
in these films, the in-plane hysteresis loops for the as-
grown and annealed films were measured at 2 K. It can
be seen from the loops shown in Figure 6a that both films
exhibit a ferromagnetic behavior and an increase of MS
at 2 K. Surprisingly, the MS value of the annealed films
is much larger than that of the as-grown films at 2 K. It
means that Eu2+ in the annealed films has magnetic con-
tribution to magnetization at low temperature and implies
that Eu3+ ion probably possesses less magnetic moment

than Eu2+. Temperature dependence of themagnetization
curves shown in Figure 6b compares the magnetic prop-
erties between the as-grown and annealed films in more
detail. It clearly shows that the annealed films convert to
ferromagnetic behavior as external magnetic field applied
to the films is raised, implying the presence of a ferromag-
netic phase transition in the annealed films at low temper-
ature. Evidently, a thermal treatment of the as-grown films
demonstrates obvious impact on their magnetic proper-
ties. Combining this result with that from XPS investiga-
tions, we can obtain that the valence instabilities of Eu in
EuTiO3 films could result in the material being ferromag-
netic at room temperature, which may extend the range
and potential of this material for application.

Conclusions
To summarize and conclude, using a hydrothermal
method, EuTiO3 films with high crystalline quality were
successfully grown on SrTiO3(001) substrate at a tem-
perature of 150°C. The films show highly oriented and
regularly shaped morphologies with graded spacial distri-
bution, which reflects a sequential growth process of the
films. Using this growth technique, EuTiO3 films grown
on SrTiO3 substrate exhibit an out-of-plane lattice shrink-
age, which could be relaxed by postannealing. Valence
instabilities of Eu were found in the sample and result in
the EuTiO3 films being ferromagnetic at room tempera-
ture, which provides an opportunity to study further their
properties and potential applications.
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