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The effects of aluminum (Al) interlayer coating and thermal post-treatment on the electron emission characteristics of
carbon nanotubes (CNTs) were investigated. These CNTs were deposited on conical-shaped tungsten (W) substrates
using an electrophoretic method. The Al interlayers were coated on the W substrates via magnetron sputtering
prior to the deposition of CNTs. Compared with the as-deposited CNTs, the thermally treated CNTs revealed
significantly improved electron emission characteristics, such as the decrease of turn-on electric fields and the
increase of emission currents. The observations of Raman spectra confirmed that the improved emission characteristics
of the thermally treated CNTs were ascribed to their enhanced crystal qualities. The coating of Al interlayers
played a role in enhancing the long-term emission stabilities of the CNTs. The thermally treated CNTs with Al
interlayers sustained stable emission currents without any significant degradation even after continuous operation
of 20 h. The X-ray photoelectron spectroscopy (XPS) study suggested that the cohesive forces between the CNTs
and the underlying substrates were strengthened by the coating of Al interlayers.
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Background

Recently, field emitters using carbon nanotubes (CNTs)
have been utilized as cold electron sources for high-
resolution X-ray apparatuses [1-3]. To use CNTs as
electron sources, the turn-on electric field that triggers
the field-driven electron emission must be low, and the
generated emission current level must be high. Simul-
taneously, the stability of the emission current must be
ensured during a long-term operation. Here, CNTs can
be prepared on various types of substrates such as flat
types and tip types either by direct [4-6] or indirect
[7-10] methods. Practically, the indirect methods have
certain advantages over the direct methods due to their
simpler deposition systems, lower costs, lower process-
ing temperatures, and easier scale-up. However, the
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indirect methods demonstrate weak adhesion often
with the widely utilized metallic substrates [11,12].
Under a prolonged emission condition, CNTs may be
removed on substrates due to their weak adhesion. This
makes it difficult to obtain uniform and consistent
emission currents from the CNT emitter. For this rea-
son, most of the indirect methods have employed flat-
type substrates in preparing CN'Ts. The use of flat-type
substrates, on the other hand, would be less desirable
than the use of tip-type substrates for the application of
CNTs as electron sources for micro-focus X-ray systems
[13]. Therefore, the combination of tip-type substrates
and indirect deposition methods is recommended for such
application of CNTs only if good adhesion and high levels
of emitted currents are guaranteed. Regarding this issue,
we have suggested the use of interlayer with hafnium (Hf)
thin films between CNTs and tungsten (W) tips [14].

This study aims at fabricating tip-type CNT emitters
that have good adhesion and illustrate high levels of
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emission currents. This has been achieved by depositing
CNTs on conical-shaped tip-type W substrates via electro-
phoretic deposition, by coating interlayers with aluminum
(Al) thin films and by performing thermal treatment.
The effects of thermal treatment as well as Al interlayer
coating on the electron emission behavior and long-
term emission stability of CNTs have been investigated
extensively.

Methods

The conical-shaped W substrates were prepared by elec-
trochemical etching [15] of 300-um-diameter W rods so
that they would have very sharp apexes of approximately
500 nm in diameter. Prior to the deposition of CNTs,
some of the W substrates were coated by 100-nm-thick
Al films via RF magnetron sputtering. The CNTs were
deposited on the W substrates with or without Al inter-
layers by using an electrophoretic deposition (EPD)
method [7]. As the initial step for the EPD process, car-
bon nanopowders with a portion of thin multi-walled
CNTs (t-MWCNTs) were purified with a magnetic stir-
rer in a solution containing a 1:1 volume ratio of con-
centrated nitric and sulfuric acids. The powder was
placed in a dispersion medium and in a vessel containing
50 ml of isopropyl alcohol (IPA). The charger material
of Mg(NOs3), - 6H,O (15 mg) was added to this suspen-
sion. The CNT solution was then uniformly mixed via
sonication for 10 min. The W-tip substrate coated with
or without the Al interlayer was used as the cathode
electrode, and the titanium nitride (TiN)-coated p-type
silicon (Si) wafer was used as the anode electrode. The
distance between the two electrodes in the suspension
was sustained at 10 mm. The deposition of CNTs was
carried out by applying a constant voltage of 80 V (DC)
with the deposition time fixed at 40 s. Finally, several of
the CNT samples were thermally treated at 600°C for
30 min in an argon (Ar) atmosphere. The identification of
the CNT samples considered in this study is listed in Table 1,
according to Al interlayer coating and thermal treatment.

Results and discussion

Figure 1 shows the emission currents of the CNTs,
which are listed in Table 1, as a function of the applied
voltage. The electron emission characteristics of the de-
posited CNTs were measured using a compactly designed
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field emission measurement system. The distance between
the cathode (CNT) and the anode (ITO-coated glass) was
carefully adjusted to be kept at 1 mm by using a micro-
spacing control system. It is clearly seen in Figure 1 that
the thermally treated CNTs (i.e.,, CNT-B and CNT-D) re-
vealed much better emission characteristics than those of
the as-deposited CNTs (i.e., CNT-A and CNT-C), while
the coating of Al interlayer seems to hardly affect the
emission characteristics. From the emission characteris-
tics, the maximum emission current (I, pm) and
turn-on voltage (V,,, V) of the CNTs were estimated by
defining the I,,, as the emission current measured at
the applied voltage of 1.2 kV and the I,, as the voltage
applied to obtain the emission current of 10 pA. Also,
the field enhancement factor (f) values of the CNTs
were calculated by applying the emission current char-
acteristics of Figure 1 to the Fowler-Nordheim theory
with the work function of CNTs to be 5.0 eV [16]. The
values of I, Von, and S estimated from all of the
CNTs are summarized in Table 1. The results showed
that the drastic increase of I, and the decrease of V,,
were induced by the thermal treatment of CNTs, re-
gardless of any Al interlayer coating. The /3 values, on
the other hand, were not much different from CNT-A
to CNT-D and estimated to be within the range from
4.30 x 10* to 4.98 x 10",

For all of the CNTs, the changes in the surface morph-
ologies due to thermal treatment and Al interlayer coat-
ing were monitored by using a field emission scanning
electron microscope (FESEM; JSM-6330 F, JEOL, Tokyo,
Japan). The FESEM images of the exterior shapes and
the enlarged surfaces for the CNT-A (without Al inter-
layer) and CNT-C (with Al interlayer) emitters are com-
pared in Figure 1. It seemed that no significant differences
in their surface morphologies were observed. It was also
observed in this study that thermal treatment hardly af-
fected the surface morphologies of the CNTs, although
their FESEM images are not displayed in Figure 1. This
may indicate that neither the coating of Al interlayer
nor the thermal treatment altered the structural aspect
ratios of the CNTs. Also, this may be in good agree-
ment with the results that the S values were similar for
all of the CNTs.

To discover any other reason that can account for the
results shown in Figure 1, the microstructures of the

Table 1 Identification of the CNT emitters considered in this study

Samples Al interlayer Thermal treatment Imax (MA) Von (V) B (x10% I/l (Raman) I/l
CNT-A Without No 71 970 446 0.59 0.05
CNT-B Without Yes 223 770 4.30 040 0.29
CNT-C With No 89 950 4.54 0.57 0.79
CNT-D With Yes 309 820 498 043 097

The electron emission characteristics of the CNT emitters are also summarized.
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Figure 1 The emission current versus electric field characteristics of CNTs. The inserted photos represent the FESEM images of the exterior
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CNTs were analyzed via Raman spectroscopy (T64000,
Jobin Yvon, Edison, NJ, USA). As shown in Figure 2, two
typical Raman peaks, the so-called ‘D’ peak (Ip) at around
1,350 cm™ and ‘G’ peak (Ig) at around 1,588 cm™, were
observed. The intensity ratios of the two peaks (i.e., Ip/Ig),
which has frequently been used to appraise the crystalli-
nity of CNTs [17], were estimated. The resultant Ip/Ig
values, as listed in Table 1, indicated that the Ip/Ig values
were seldom changed by coating of the Al interlayers, but
they were significantly reduced by thermal treatment, such
as 0.57 to 0.59 for the as-deposited CNTs and 0.40 to 0.43
for the thermally treated CNTs. This may have been be-
cause the amorphous carbonaceous by-products, residual
binders, and other impurities that were adsorbed on the
CNTs' outer walls were somewhat removed during the
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Figure 2 The Raman spectra of the CNTs. The estimated I/l values
are also displayed for all of the CNTs.

thermal treatment. Accordingly, it can be inferred from
the FESEM and Raman results that the enhanced electron
emission of the thermally treated CNTs may be due to the
improvement of their crystal qualities [18].

The X-ray photoelectron spectroscope (XPS; Multi-
Lab 2000, Thermo, Pittsburgh, PA, USA) was used to
analyze the chemical bonds of the CNTs. Figure 3a,b
shows the XPS spectra of the C 1s state for all of the
CNT samples. The C 1s spectra were composed of se-
veral characteristic peaks, such as two peaks due to the
carbon-carbon interactions including C-C sp* bonds at
the binding energy of 284.4 to 284.7 eV and C-C sp®
bonds at 285.1 to 285.5 eV, and two relatively weak
peaks due to the carbon-oxygen interactions including
C-O bonds at 286.4 to 286.7 eV and C=0O bonds at
287.8 to 288.1 eV [19]. Also, the variations of the peak
intensities due to thermal treatment were calculated,
which are expressed in Figure 3a,b as the intensity ra-
tios of thermally treated CNTs (i.e., CNT-B or CNT-D)
to as-deposited CNTs (i.e., CNT-A or CNT-C) for each
peak (e.g., CNT-B/CNT-A = 1.08 for the C-C sp” peak
as shown in Figure 3a). The results show that after the
thermal treatment, the C-C sp* bonds increased, but
the C-C sp® bonds decreased. This implies the improve-
ment of the CNTs' crystal qualities, which corresponds to
the Raman analysis as shown in Figure 2. After the ther-
mal treatment, furthermore, both of the C-O and C=0
peaks were observed to be reduced. These carbon-oxygen
peaks indicate that oxygen contaminants such as the car-
bonyl (C=0), carboxyl (-COOH), and hydroxyl (O-H)
groups, which may be generated inevitably by acid treat-
ment during the purification process [20], exist in the
CNTs. Accordingly, the decrease of the carbon-oxygen
peaks in the XPS spectra indicated that the decomposition
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Figure 3 The XPS spectra for C 1 s states of the CNTs. (a) The

XPS spectra of the CNT-A and CNT-B samples. (b) The XPS spectra of
the CNT-C and CNT-D samples.

of the oxygen contaminants occurred via the thermal
treatment [21].

The following results represent the effects of Al inter-
layer coating and thermal treatment on the CNTs' elec-
tron emission stabilities due to prolonged operation. The
stability test was conducted by continuously applying
the voltage, which was required for the initial emission
current to approach approximately 100 pA, for up to
20 h. The instantaneous emission currents were re-
corded at 10-min intervals, and the results of the emis-
sion stability test are shown in Figure 4. To describe
quantitatively the change of emission currents due to
the prolonged application of voltage, the average
values of the emission currents generated during the
initial (0 to 1 h) and final (19 to 20 h) stages of ope-
ration (denoted by ‘I;’ and ‘I¢/, respectively) were calcu-
lated, and the ratios of Ip/I; are listed in Table 1. As
the emission time elapsed, the emission current of the
CNTs without Al interlayers (i.e., CNT-A and CNT-B)
decreased. At the final stage, the emission currents

Current (pA)
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Figure 4 The long-term (20 h) emission characteristics of CNTs.
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Figure 5 The XPS spectra of the Al 2p states of the CNTs. (a)
The XPS result of the CNT-C emitter. (b) The XPS result of the
CNT-D emitter.
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decreased down to approximately 5% for CNT-A and
29% for CN'T-B, as compared with the initial emission
currents. On the other hand, the CNTs with Al inter-
layers (i.e., CNT-C and CNT-D) showed highly stable
electron emission characteristics.

The electron emission stability of CNTs may depend
on how strongly the CNTs adhere to the underlying sub-
strates during operation. Figure 5a,b shows the XPS
spectra of the Al 2p states for the CNT-C and CNT-D
samples, respectively. Both of the CNTs had the peaks of
Al-O bonds at 75.5 eV as well as the relatively strong
peaks of Al-Al metallic bonds at 72.8 eV. The peak in-
tensity of the Al-O bonds was increased after thermal
treatment, indicating that the oxidation of Al atoms was
thermally activated [22]. The surface layers composed of
the Al-O bonds may prevent the CNTs from being dam-
aged by the ionized particles [12] during electron emis-
sion and also suppress the Joule heat [23] which may
occur mainly near the summit part of the conical-
shaped emitter. This was confirmed by the FESEM im-
ages of the CNT samples, which were measured at both
their initial and final stages of electron emission, which
are displayed in Figure 6. The CNT-B revealed that its
summit part melted due to the prolonged electron emis-
sion, and the conical shape of the emitter summit disap-
peared, as shown in Figure 6b. In contrast, the CNT-D
emitter maintained its morphology of having a conical
shape even after 20 h of operation, as shown in Figure 6d.
In the Al 2p XPS spectra of the CNT-D, furthermore, an
additional peak at 74.0 eV due to the Al-C bonds was
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observed, as shown in Figure 5b. This may imply that the
Al atoms incorporated in the Al interlayers were cova-
lently bonded with the C atoms incorporated in the CNTs.
This also indicates that coating of Al interlayer may pro-
vide the CNTs the additional chemical forces due to the
Al-C interactions when the CNTs were thermally treated.
It can be concluded, therefore, that the chemical bonds
such as Al-O and Al-C may strengthen the adhesion be-
tween the CNTs and the substrates, eventually leading to
the enhanced long-term emission stabilities of the CNTs.

Conclusions

The conical-type CNT-based field emitters were fabri-
cated using the EPD method. Substantially, enhanced
emission characteristics, such as lower turn-on voltage
and higher emission currents, were obtained by ther-
mally treating the CNTs. From the FESEM observations
as well as from the electrical measurements of emission
characteristics, the thermal treatment barely affected the
CNTs' surface morphologies and field enhancement fac-
tors. The observations of the Raman spectra confirmed
that the improved emission characteristics of the ther-
mally treated CNTs were ascribed to their higher degrees
of crystallinities. In addition, the long-term emission sta-
bilities of the CNTs were significantly ameliorated by coat-
ing Al interlayers prior to the deposition of CNTs. The
CNTs, when deposited on the Al interlayers and thermally
treated, exhibited highly stable electron emission beha-
viors without any significant degradation of emission cur-
rents even after 20 h of operation. The XPS results
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Figure 6 The FESEM images before and after the stability test. The morphologies of the CNT-B emitter, which were measured at the (a) initial
(ie, before the stability test) and (b) final (i.e, after 20-h emission) stages of electron emission. The CNT-D emitter's morphologies measured at the
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indicated that the improved adhesion of CNT-D was as-
cribed to the increase of Al-O bonds and the creation of
Al-C bonds by thermal treatment. This may diminish the
possibility of electric arcing at the W tip and also enhance
the W tip's robustness against melting, which may eventu-
ally lead to the improved long-term emission stability of
the CNTs. It was also reported by our previous work [14]
that the emission stabilities of CNTs deposited on the W
tips coated with Hf interlayer were improved only when
the CNTs were thermally treated. This was due to the for-
mation of carbide bonds (Hf-C) at elevated temperature.
In this study, the CNTs using Al interlayers showed that
the enhanced emission stabilities were observed not
only for the thermally annealed CNTs but also for the
as-deposited CNTs without thermal treatment. This
was because oxide bonds (Al-O) already existed in the
as-deposited CNTs, while carbide bonds (Al-C) were
observed for the thermally annealed CNTs.
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