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Abstract

percolation of Co-H-Co complexes along the c-axis.

Hydrogen-treated ZnCoO shows magnetic behavior, which is related to the formation of Co-H-Co complexes.
However, it is not well known how the complexes are connected to each other and with what directional behavior
they are ordered. In this point of view, ZnCoO nanowire is an ideal system for the study of the magnetic anisotropy.
ZnCoO nanowire was fabricated by trioctylamine solution method under different ambient gases. We found that the
oxidation of trioctylamine plays an essential role on the synthesis of high-quality ZnCoO nanowires. The hydrogen
injection to ZnCoO nanowires induced ferromagnetism with larger magnetization than ZnCoO powders, while
becoming paramagnetic after vacuum heat treatment. Strong ferromagnetism of nanowires can be explained by the
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Background

Co-doped ZnO (ZnCoO) has been intensively studied
because of its widespread applicability as a magnetic semi-
conductor [1-3]. Many studies have shown that its ferro-
magnetism depends on the fabrication method and the
post-treatment conditions. A variety of theoretical mod-
els have been suggested to explain experimental results
[2,4-7]. However, the origin of ZnCoO ferromagnetism
remains unclear.

Chemical fabrication of ZnCoO is greatly affected by
experimental factors, compared with other deposition
methods such as pulsed laser deposition and radio fre-
quency (RF) sputtering [8-11]. Post heat treatment, used
to eliminate organic residuals, can induce secondary
phases and crystalline defects, which can interfere with
the investigation of intrinsic properties [12-15]. Unwanted
hydrogen contamination during fabrication, in particu-
lar, is known to create defects that degrade the physical
properties of ZnO-based materials. However, many exper-
imental results have consistently supported the model of
magnetic semiconductors in which Co-H-Co complexes
are created by hydrogen doping of ZnCoO [5,13,16-21].
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ZnCoO nanowires have received extensive attention
because of advantages such as high aspect ratio and
widespread applicability [22-25]. However, determining
the intrinsic properties has been difficult, and the perfor-
mance and reliability of ZnCoO nanowire devices have
been controversial because they are typically fabricated
using chemical methods with non-polar solvents [23,26].

ZnCoO nanowire fabrication with non-polar solvents
is based on thermal decomposition via a well-known
chemical mechanism [27-30]. The reported fabrication
conditions, including temperature, additives, and reac-
tion environment, vary [26,31]. These factors affect not
only the growth of the nanowires but also the physi-
cal properties of the final nanowires. Although ambient
synthesis has been regarded as a significant condition in
such chemical reactions [32], no one has yet reported
on the properties of nanowires with respect to their
synthesis environment. In this study, we examined the
change in the nanowire morphology as a function of the
fabrication conditions. This is the first report suggest-
ing that the ambient gas should be carefully considered
as one of the more important factors in the chemi-
cal synthesis of high-quality nanowires. The high-quality
ZnCoO nanowires initially exhibited intrinsic paramag-
netic behavior; however, following hydrogen injection, the
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nanowires became ferromagnetic. This finding is consis-
tent with the hydrogen-mediation model. Additionally,
this was the first observation of the superb ferromag-
netism of the nanowire, compared with powders, reflect-
ing the favored direction of the ferromagnetism along the
c-axis of the nanowires.

Methods

For the fabrication of Zng 9Cog.1 O nanowires in this study,
we chose the aqueous solution method, which is one
of the representative chemical fabrication routes. Zinc
acetate (Zn(CH3CO3)5) (2.43 mmol) and cobalt acetate
(Co(CH3CO2)2) (0.27 mmol) were used as precursors,
and non-polar trioctylamine (N(CH3(CHy)7)3) (25 ml)
was used as the solvent; Co doping of ZnO was accom-
plished using 10 mol.% cobalt acetate. The precursors
were rapidly heated to 310°C in an electric furnace with
an inert gas atmosphere for fast thermal decomposition
(Figure 1). The syntheses were carried out using differ-
ent ambient gases, including flowing inert Ar (99.999%),
flowing air (99.999%) with a continuous oxygen supply,
and closed air (99.999%) with oxygen inclusion only for
the initial reaction (Table 1). The gas flow rate was main-
tained at 25 sccm. The nanowire length was manipulated
from 500 nm to 3 um by controlling the synthesis time
between 30 min and 2 h. The synthesized nanowires were
cleaned in ethanol and distilled water repeatedly, followed
by annealing in stages at 300°C for 10 h and 800°C for 10 h
under a vacuum (1072 Torr) to remove organic residues.
For comparison, ZnCoO nanopowder [13] and ZnCoO
micropowder [20] were also prepared (see the references
for detailed information). Hydrogen injection was per-
formed by plasma treatment using an Ar/H (8:2) mixed
gas (99.999%), and all samples were exposed twice for 15
min to hydrogen plasma using an RF power of 80 W.

The change in nanowire morphology and the secondary
phase were investigated by field-emission scanning elec-
tron microscopy (FE-SEM, S-4700, Hitachi, Tokyo, Japan)
and X-ray diffraction (XRD, Empyrean series2, PANalyti-
cal, Almelo, The Netherlands). Magnetic properties such
as magnetization were measured using a vibrating sam-
ple magnetometer (VSM, model 6000, Quantum Design,
San Diego, CA, USA) attached to a physical property
measurement system.
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Figure 1 Electric furnace for the synthesis of ZnCoO nanowires.
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Table 1 Controlling ambient gas by gas distinction

Sample name Gas

S1 Argon gas (99.999%, continuous flow)
S2 Air gas (99.999%, continuous flow)

S3 Air gas (99.999%, non-continuous)

Results and discussion

Figure 2 shows the FE-SEM images of the ZnCoO
nanowires synthesized using different ambient gases.
Figure 2a shows the FE-SEM images of the samples
labeled S1, which were fabricated using ambient Ar gas.
Figure 2b shows the same image magnified by a factor
of three. ZnCoO nanowires were produced sporadically,
and the average length was 700 nm. Figure 2c shows the
FE-SEM images of the samples labeled S2, which were
fabricated using air continuously supplied with oxygen.
Figure 2d shows the same image magnified by a factor
of three. ZnCoO nanowires were produced sporadically,
and the maximum length was approximately 2.5 pm.
Figure 2e shows the FE-SEM images of the samples labeled
S3, which were generated using a fixed air supply with
restricted oxygen content. Figure 2f shows the same image
magnified by 1.5. The ZnCoO nanowires were produced

Figure 2 FE-SEM images of ZnCoO nanowires fabricated using
different ambient gases. (a) FE-SEM image of sample S1 obtained
under continuous argon gas flow and (b) a magnified image.

(c) FE-SEM image of sample S2 obtained under continuous air gas
flow including oxygen and (d) a magnified image. (e) FE-SEM image
of sample S3 obtained under initial air gas conditions without
continuous air gas flow and (f) a magnified image.
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uniformly, and the average length was 2 um. These results
indicate that the morphology of the ZnCoO nanowires
depends on the ambient gas and, in particular, on the
oxygen content.

XRD confirmed that the fabricated samples (S1, S2, and
S3) contained no Co-related species and that all peaks
corresponded to a single ZnO phase. Figure 3 shows
magnetization-applied magnetic field (M-H) curves mea-
sured by the VSM at room temperature. Different ferro-
magnetic hysteresis shapes were observed for the three
samples, even though they contained equal amounts
of Co. This means that the ferromagnetism of ZnCoO
nanowires is closely related to the synthesis environment.
Therefore, we investigated the dependence of the ferro-
magnetism on the ambient gas during ZnCoO nanowire
fabrication.

Oxidation of trioctylamine solution was considered as
a possible explanation for the different morphologies and
properties of ZnCoO nanowires depending on ambient
gases. It was expected that trioctylamine would react with
oxygen at 310°C, near the boiling point, and then triocty-
lamine oxide would be formed via the following reaction:

2(CyHs)3N(g) + O2(g) —> 2(CHs)sNT — 0~ (1)

The amine oxides generated by the oxidation reaction
are polar, allowing them to act as surfactants [33]. The
(0001) planes of ZnCoO have relatively low surface energy
because of the dangling bonds that induce surface polar-
ity, as shown in Figure 4a. The trioctylamine non-polar
solution provides a favorable environment for the growth
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Figure 3 M-H curves of the as-grown ZnCoO nanowires. M-H
characteristics of ZnCoO nanowires fabricated using different
ambient gases. The M-H curves were acquired at 300 K.
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Figure 4 Schematics illustrating the growth processes of ZnCoO
nanowires and photographs of trioctylamine solution. Under (a)
Ar and (b) air ambient gas. Oxidation of trioctylamine in (b) produces
polar amine oxides. (€) Photographs of trioctylamine solution and the
ZnCoO nanowire solutions, showing the different colors during the
reaction, depending on O, content.

of nanowires along the c-axis, because the plane parallel
to the c-axis of ZnCoO has lower surface energy and a
different polarity compared with the perpendicular plane
[34,35]. In the case of S2, the oxidation reaction occurred
continuously, and the amine oxides were generated in
excess, as shown in Figure 4b. The excessive formation
of amine oxides could change the polarity of the solu-
tion from non-polar to polar and hinder the growth of
the c-axis-oriented ZnCoO nanowires. However, the cor-
rect amount of amine oxides generated in sample S3, in
which oxygen gas was supplied only initially, positively
affected the synthesis of ZnCoO nanowires. In many stud-
ies, oleic acid, a well-known surfactant, was intentionally
added during the fabrication of ZnCoO nanowires [36].
In our study, the growth of nanowires was enhanced sim-
ply by controlling the ambient gas instead of supplying
additional surfactant.

Figure 4c shows color changes during the reaction, as
the solution turned brown after the synthesis of nanowires
under each ambient gas. Generally, such browning reac-
tion results from the oxidation of the chemical specimen.
Because the color brightness is dependent on the oxygen
content during the synthesis reaction, we assumed that
the browning originated from the creation of the oxidized
specimen in the presence of trioctylamine. The formation
of an amine oxide specimen can be a contributing factor in
the determination of the ZnCoO nanowire morphology.
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Therefore, we suppose that the variation in the synthe-
sized ZnCoO nanowires shown in Figure 2 is the result of
different amine oxide contents generated under different
ambient gases.

It has been reported that ZnCoO doves not exhibit
intrinsic ferromagnetism, whereas our as-grown nanowires
showed clear ferromagnetic hysteresis, as shown in Figure 3.
For more detailed analysis of the intrinsic properties of
ZnCoO nanowires, vacuum annealing was performed at
800°C on S3 ZnCoO nanowires. Figure 5a,b shows the FE-
SEM images of the ZnCoO nanowires as grown and after
the annealing treatment. The nanowires retained their
shape after heat treatment at 800°C, with no noticeable
change in morphology. Figure 5¢ shows the XRD patterns
of ZnCoO nanowires as grown and after annealing. All
patterns correspond to those of a single ZnO phase, and
no secondary phases were observed within the detection
limit. The full-width at half maximum values of the peaks
did not change after annealing, indicating that the size of
the nanowires did not change significantly after the heat
treatment.

Figure 6a shows the M-H curves of the ZnCoO
nanowires before and after heat treatment and subsequent
hydrogen plasma treatment. Before heat treatment, the
nanowires showed a clear ferromagnetic hysteresis, but
the curves became completely paramagnetic after heat
treatment at 800°C. We assumed that the ferromagnetic
behavior observed in the nanowires before thermal heat
treatment was attributed to (Co related-) organic residue
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Figure 5 FE-SEM image and XRD patterns of ZnCoO nanowire.
FE-SEM image of ZnCoO nanowire (a) before annealing (As-grown
Nanowire) and (b) after vacuum annealing process at 800°C
(Nanowire at @800). (c) XRD patterns of ZnCoO nanowire before and
after the thermal treatment.
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Figure 6 M-H curves and XRD patterns of ZnCoO nanowire. (a)
M-H curves of the as-grown nanowire without annealing (Nanowire
raw), nanowire after vacuum annealing at 800°C (Nanowire @800),
and nanowire after hydrogen treatment of the vacuum-annealed
nanowire at 800°C (Nanowire:H), respectively. (b) XRD patterns of
hydrogenated ZnCoO nanowire (Nanowire:H).

on the surface of the nanowires synthesized via the aque-
ous solution method [15,20,37]. However, a more detailed
analysis of the surface composition would require an addi-
tional investigation utilizing a surface characterization
technique, such as XPS or Raman spectroscopy. It was
evident that the vacuum heat treatment effectively elim-
inated the (Co related-) organic residue, and the pure
ZnCoO nanowires without (Co related-) organic residue
exhibited paramagnetic properties [20,38,39]. The para-
magnetic behavior became ferromagnetic after hydrogen
plasma treatment. The ferromagnetic hysteresis curve
itself was similar to those of the as-grown nanowires, but
the origin of the ferromagnetism was different. This result
is also consistent with previous studies suggesting that
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hydrogen mediates ferromagnetism in ZnCoO by the for-
mation of a C-H-Co complex. Figure 6b shows an XRD
pattern of nanowires after hydrogen treatment, where
all the diffraction peaks correspond to those of a single
ZnO phase with no Co secondary phases. Considering the
above results, the ferromagnetism of ZnCoO nanowires
grown by Yuhas et al. [26] using the same aqueous solu-
tion method was attributed to surface contamination by
hydrogen compounds, such as organic residue. Therefore,
it should be noted that the magnetic characteristics of the
as-grown ZnCoO nanowires fabricated using the aqueous
solution method are not intrinsic but are due to surface
contamination.

To determine the direction of the spin ordering,
we compared the ferromagnetic M-H curves of the
nanowires, nanopowder, and micropowder for 10 mol%
Co-doped ZnO under the same hydrogen injection con-
ditions. The nano- and micro-powder samples had diam-
eters of 20 nm and 1 pm, respectively. The lengths of the
nanowires were manipulated from 0.5 to 2 um, while the
diameter was constant at 40 nm, by varying the synthesis
processing time. Figure 7 shows the magnetic character-
istics of the samples obtained from VSM measurements.
The c-axis-oriented nanowires showed increasing mag-
netization with increasing nanowire length, as well as
the largest remnant magnetization (M) compared to the
powder samples. The ZnCoO nanowires showed a higher
squareness ratio (Mg/Ms) (more than 10 times com-
pared with the other samples). It has been reported that
squareness ratio is related to the magnetic domain size
formed by the ferromagnetic units [13,15,40]. In previous
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studies, ferromagnetic models suggested that hydrogen
was introduced by Co-H-Co complexes [5], but these
reports did not fully explain how the complexes were
ordered and aligned. We found that the ferromagnetism
in nanowires depended on the nanowire length and was
greatly enhanced compared to that of nano- and micro-
powders. Such results imply that magnetic ordering in
ZnCoO nanowires occurs preferentially along the c-axis
due to the percolation of the Co-H-Co complex unit.

Conclusions

High-quality ZnCoO nanowires were obtained by the
aqueous solution method. The ambient gas affected
the magnetic properties of the fabricated samples, and
the oxidation of trioctylamine solution played an impor-
tant role. The generation of an appropriate amount of
amine oxide due to a limited oxygen supply enhanced the
growth of ZnCoO nanowires because the amine oxide
acted as a surfactant. However, excessive oxygen inhibited
the growth by changing the polarity of the solution. The
as-grown ZnCoO nanowires exhibited magnetic prop-
erties, but these properties were extrinsic due to the
thermal heat treatment process. Intrinsic ferromagnetism
in ZnCoO nanowires was only obtained after hydro-
gen treatment. The room-temperature ferromagnetism of
nanowires grown along the c-axis was larger than those of
the nano- and micro-powders.

We suggest that the magnetic units of Co-H-Co formed
in ZnCoO percolated efficiently along the c-axis. Further-
more, we expect that the nanowire structure of ZnCoO
will enable further studies of magnetic anisotropy.
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Figure 7 Magnetic properties depending on the different shapes and sizes of ZnCoO:H. Each ZnCoO hydrogenated at 80 W (Nanopowder:H,
Micropowder:H, and Nanowire:H). Nanowire:H shows relatively higher Mg and squareness ratio (Mr/Ms) than Nanopowder:H and Micropowder:H.
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