
Suprun and Shmeleva Nanoscale Research Letters 2014, 9:200
http://www.nanoscalereslett.com/content/9/1/200
NANO EXPRESS Open Access
Alpha-helical regions of the protein molecule as
organic nanotubes
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Abstract

An α-helical region of protein molecule was considered in a model of nanotube. The molecule is in conditions of
quantum excitations. Such model corresponds to a one-dimensional molecular nanocrystal with three molecules in
an elementary cell at the presence of excitation. For the analysis of different types of conformational response of
the α-helical area of the protein molecule on excitation, the nonlinear response of this area to the intramolecular
quantum excitation caused by hydrolysis of adenosine triphosphate (ATP) is taken into account. It has been established
that in the simplest case, three types of excitation are realized. As estimates show, each of them ‘serves’ different kinds
of protein. The symmetrical type of excitation, most likely, is realized in the reduction of traversal-striped skeletal
muscles. It has the highest excitation energy. This well protects from casual actions. Antisymmetric excitations
have intermediate energy (between symmetrical and asymmetrical). They, most likely, are realized in membranous
and nucleic proteins. It is shown that the conformational response of the α-helical region of the protein is (in
angstroms) a quantity of order Nc/5, where Nc is the number of spiral turns. For the number of turns typical in this
case: Nc ~ 10, displacement compounds are a quantity of order 2 Å. It qualitatively corresponds to observable
values. Asymmetrical excitations have the lowest energy. Therefore, most likely, they are realized in enzymatic
proteins. It was shown that at this type of excitation, the bending of the α-helix is formally directed to the opposite side
with respect to the antisymmetric excitations. Also, it has a greater value than the antisymmetric case for Nc≤ 14 and
smaller for Nc > 14.
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Background
Hydrolysis of ATP and amide I excitation
A protein molecule has a rather unique structure not only
in the chemical-biological point of view but also as an in-
teresting physical and mathematical object. If we consider
it as a physical object, then such object may be referred to
as a nanostructure without any doubt. Thus, the alpha-
helical region of a protein molecule simultaneously may
be considered both as a nanotube and as a nanowire: this
depends on the considered level of structure.
Here, the alpha-helix is considered at the level of second-

ary structure where it is a nanotube. It is in the conditions
of quantum excitation which is stimulated by reaction of
hydrolysis of adenosine triphosphate (ATP). As a result of
* Correspondence: lshmel@univ.kiev.ua
Taras Shevchenko National University of Kyiv, Volodymyrska Street, 64/13,
Kyiv 01601, Ukraine

© 2014 Suprun and Shmeleva; licensee Springe
Commons Attribution License (http://creativeco
reproduction in any medium, provided the orig
this reaction, energy in the form of quanta of infrared range
is released. It is considered that they are absorbed by a
group of energy states known in an alpha-helix as amide I,
etc. It is considered also that these absorbing states have an
internally molecular oscillating nature. The results obtained
here allow giving a definite answer to this question, because
in the infrared range, absorption can also have the nature
of electronic transitions between states with the main
quantum number equal to 2.
The alpha-helix is interesting as a mathematical object

too. Due to the high sensitivity of its ‘crystalline lattice’
in relation to excitation, we are coming to a necessity to
solve a nonlinear system of the so-called eigen type, i.e.,
actually, we are coming to a necessity to search for the
eigenvalues and eigenvectors of a nonlinear system of al-
gebraic equations. Such a problem, as it is known to us,
is a scantily explored mathematical problem.
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Figure 1 shows the alpha-helical fragment of a protein mol-
ecule. Similar regions in proteins are widespread enough
in vivo. The degree of helicity in different proteins varies from
12% to 96%. As can be seen from Figure 1, the alpha-helical
fragment of protein molecules is structurally a nanotube. The
same is true for its physical properties. Therefore, to such re-
gions of protein molecules in their excited states, it is natural
to apply methods that are specific for nanotubes.
As a result of hydrolysis of ATP molecule, energy is

realized in the range 0.2 to 0.4 eVa. It depends on the
charge state of the ATP molecule, in which the compos-
ition of the environment influences mainly (pH, etc.).
The energy of hydrolysis is absorbed by an alpha-helical
region of the protein molecule. It takes place due to in-
ternal vibrational excitations of the peptide groups
(HCNO) in the state amide I. Its energy is also varied
within the limits of 0.2 to 0.4 eV. These excitations in-
duce a significant increase of dipole moments of the
peptide groups, which is equal to 3.7 D, on 0.29 D [4,5].
There exists another point of view. Excitation of amide I

may have an electronic nature. It may correspond to tran-
sitions between energy bands with principal quantum
Figure 1 The real (a) [1,2] and schematic (b) [3] images of an
alpha-helix.
numbers that are equal to 2. The physical nature of excita-
tion is inessential for further calculations, but further it
will be shown that their nature may be determined
experimentally.

Methods
Amide I excitation in the simplest model of alpha-helical
region of protein
Foremost, we need to determine the model of descrip-
tion of the spatial structure of the alpha-helix. Since it is
considered as a molecular crystal, the nearest neighbor
approximation is used, which is typical for such crystals.
However, as seen from Figure 1b, the nearest neighbors
for some peptide group with number n are not only
group n ± 1 but also group n ± 3.
The simplest model of the spatial structure of the

alpha-helix is shown in Figure 2. Such simplified model
differs from a real molecule only by symmetry. In the
model considered, the molecule is independent from
each other: translational and axial symmetries. The real
molecule has translational-helical symmetry. Preliminary
investigations have already shown that the qualitative
picture in terms of types of excitation does not change.
Changes will only be quantitative. They will lead only to
some displacement of the absorbing states by energy
and, may be, to some mixing of states. In this, simplest,
model, all turns of the helix closed on itself, although
Figure 1 shows that this is not quite so. Each turn of the
helix is open for the nearest neighbor. It was previously
shown [6] that taking into account open individual cells
leads only to quantitative changes. The qualitative pic-
ture remains unchanged.
Within the framework of the considered model, every

three peptide groups that belong to one turn of the helix
grouped into one complex unit cell. We will number
these unit cells by indices n, m, etc. The number of such
cells is three times less than the number of peptide
groups, i.e., N0/3. Peptide groups within a single cell will
be enumerated by indices α, β, etc. that may take values
0, 1, 2. The general functional for the alpha-helix in this
model has the form [7]
Ro

o

Z

Figure 2 Simplest model of alpha-helix as a one-dimensional
molecular crystal with three molecules per unit cell. Arrows are
showing a separate peptide group. They symbolize the
dipole moments.
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E Rf g; Af gð Þ ¼ 1
2

X
nα

X
mβ

=
n
w Rnα−Rmβ

� �þ D Rnα−Rmβ

� �
Aαnj j2

þMnα;mβA
�
βmA αn

o
:

w(Rnα −Rmβ) in this functional is the basic energy of
interaction between peptide groups nα and mβ. It is in-
dependent on the presence of excitation and exists al-
ways. D(Rnα − Rmβ)|Aαn|

2 is an additional energy to the
w(Rnα −Rmβ) energy of interaction related only to excita-
tion but considerably smaller. Factor Aαn is the wave
function that describes the excited state of the examined
alpha-helical region of the protein molecule. It deter-
mines the spatial-temporal distribution of excitation in
this region. The energy D(Rnα −Rmβ)|Aαn|

2 leads to the
breaking of the equilibrium of the alpha-helix and stimu-
lates its conformational response to excitement. Energy
Mnα;mβA�

βmAαn is also an additional energy of interaction.

However, it is much less than D(Rnα −Rmβ)|Aαn|
2 but

important because it provides the propagation and trans-
fer of excitation along the alpha-helix.
As shown in Figure 2, the nearest neighbors for some

peptide group nα will only be the peptide groups m = n ± 1,
β = α and m = n, β = α ± 1. Taking into account that in the
considered model all energy terms depend on the distances
between amino acid residues only, the following formulae
in the nearest neighbor approximation may be obtained:
Rnα ≡ |Rn + 1,α −Rn,α|, ρnα ≡ |Rn,α + 1 −Rn,α|.
Let us take into account that the response of the lat-

tice (Figure 2) on excitation inside of the unit cell is
small enough. Thus, it may be neglected in comparison
with a similar response between unit cells. In this sense,
the equality ρnα = ρ0 is always supposed fulfilled. Factor
Rnα is the only value that takes into account the response
of the alpha-helix on excitation. Thus, we will denote its
equilibrium value as R0. Values ρ0 and R0 are shown in
Figure 2. Taking into account the normalization conditionX

nα

Anαj j2 ¼ 1; ð1Þ

the last functional takes the form

E Rf g; Af gð Þ ¼
X
nα

w⊥ þ D⊥ þ
X
nα

n
w Rnαð Þ þ D Rnαð Þ Aαnj j2þ

þ 1
2
Mjj A�

α;nþ1 þ A�
α;n−1

� �
Aαn þ 1

2
M⊥ A�

αþ1;n þ A�
α−1;n

� �
Aαn

o
:

ð2Þ

Here, w⊥ ≡w(ρ0), D⊥ ≡D(ρ0), M⊥=M(ρ0), and M|| =M
(R0). Obviously, |M⊥|≠ |M|||. If resonance interaction has
no electronic nature, inequality will be realized: |M⊥| < |M|||.
If excitation has an electronic nature, inequality will be
reversed: |M⊥| > |M|||. This difference may be detected
experimentally, and the answer of the question about
the physical nature of excitation may be obtained.
New equilibrium values of distances, which actually
coincide with the step of alpha-helices, are determined

using the general condition of minimization: ∂E Rf g; Af gð Þ
∂Rn α

¼ 0.

When interactions between peptide groups are modeled
as purely dipole, the step of the alpha-helix always de-
creases and is given by

Rnα ¼ R0−
D= R0ð Þ�� ��
w== R0ð Þj j Anαj j2: ð3Þ

Next, we must substitute (3) in (2), take into account

the condition
D= R0ð Þj j
w== R0ð Þj j Anαj j2 << R0, designate w(R0) ≡w||,

D(R0) ≡D||,
D= R0ð Þj j2
w== R0ð Þj j ≡G , and introduce convenient re-

designation: M|| = −|M||| ≡ −2Λ, M⊥ = |M⊥| ≡ 2Π, which
take into account the true signs. Then for the functional
(2), finally, the following formula will be obtained:

E Af gð Þ ¼ Eосн−
X
nα

n
Λ A�

α;nþ1 þ A�
α;n−1

� �
Aαn þ 1

2
G Aαnj j4

−Π A�
αþ1;n þ A�

α−1;n

� �
Aαn

o
:

ð4Þ
In Equation 4, Eосн = (w⊥ + w||)N0 +D⊥ +D||, and the

following is taken into account:X
nα

w⊥ þ wjj
� � ¼ w⊥ þ wjj

� �
N0:

N0 is the number of amino acid residues in the alpha-
helical region of the protein molecule, which is under
consideration.
Further, for implementation of the conditional minimization

of energy (4) in relation to wave functions Aαn, it is ne-

cessary to create a conditional functional: Eум Af gð Þ ¼ E

Af gð Þ þ ε 1−
X
nα

Aαnj j2
 !

. From a mathematical point

of view, parameter ε is an indefinite Lagrange multi-
plier, and physically, it is the eigenvalue of the consid-

ered system. The minimization procedure ∂Eум Af gð Þ
∂A�

α n
¼ 0

produces the equation Λ(Aα,n + 1 + Aα,n − 1) +G|Aαn|
2

Aαn −Π(Aα + 1,n + Aα − 1,n) + εAαn = 0. After dividing this
equation by Λ and introducing the notations,

g≡
G
Λ

; λ≡
Π

Λ
; χ≡

ε

Λ
; ð5Þ

it is possible to reduce it to a dimensionless form:

Aα;nþ1 þ Aα;n−1 þ g Aαnj j2Aαn−λAαþ1;n−λAα−1;n þ χAαn ¼ 0:

ð6Þ
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The function Aαn is complex. Therefore, the common
solution of the system (6) has the form Aαn = aαn · exp
(iγαn). Amplitude aαn and phase γαn are real functions of
the variables α and n. We confine ourselves to the
Hamiltonian-Lagrangian approximation in phase [8].
Due to the stationarity of the solved problem, this ap-
proximation has the simplest form: γαn ≡ kn. If the
alpha-helical part of the molecule is long enough,b a
Born-Karman condition gives k ¼ 2π

Nc
j . Here, Nc≡ N0

3 is

the number of turns in the considered alpha-helical re-
gion of the protein molecule. It plays the role of the di-
mensionless length of the helical region of the protein
in units of an alpha-helix step. Parameter j has the
values j≈0; � 1; � 2;…;� Nc

2 . Then

Aαn ¼ aαn e
ikn; ð7Þ

and Equation 6 takes the form

aα;nþ1e
ik þ aα;n−1e

−ik þ ga3αn − λaαþ1;n − λaα−1;n þ χaαn ¼ 0:

Separating real and imaginary parts, we have the fol-
lowing formulae:

cos kð Þ⋅ aα;nþ1 þ aα;n−1
� �þ ga3αn−λaαþ1;n−λaα−1;n þ χaαn ¼ 0;

ð8Þ

sin kð Þ⋅ aα;nþ1−aα;n−1
� � ¼ 0: ð9Þ

The solution of this system is usually determined after
transition to continuous approximation. But we will
analyze systems (8) and (9) without using the continuous
approximation, because we are interested in very short
alpha-helical regions (10 to 30 turns).
There is only condition aα,n + 1 − aα,n − 1 = 0 (if not to

restrict solutions by using the condition k = 0), which
does not depend on any symmetry of the alpha-helix:
whether it is the symmetry of the model or the sym-
metry of the real molecule. Viewing of other conditions
can appear useful on account of the real structure of the
alpha-helical region. In the simplest case, it may be re-
duced to the equation aαn = Pα. The system (8) now de-
generates in the system of three nonlinear equations:

xP0−P1−P2 þ yP3
0 ¼ 0;

−P0 þ xP1−P2 þ yP3
1 ¼ 0;

−P0−P1 þ xP2 þ yP3
2 ¼ 0;

P2
0 þ P2

1 þ P2
2 ¼

1
Nc

;

ð10Þ

where the following designations are introduced:

χ þ 2 cos kð Þ
λ

≡x;
g
λ
≡y: ð11Þ
The last, fourth, equation arose out from normalization
condition (1). The coefficients Pα (α = 0, 1, 2) determine
the excitement of each peptide chain as a whole.
The system (10) consists of four nonlinear equations

for determining the values P0, P1, and P2 and the eigen-
value x. By adding and subtracting the first two equa-
tions and some transformation of the third equation, the
system (10) can be reduced to the form

P0−P1ð Þ xþ 1þ y P2
0 þ P2

1 þ P0P1
� �� � ¼ 0;

P0 þ P1ð Þ x−1þ y P2
0 þ P2

1−P0P1
� �� � ¼ 2P2;

P0 þ P1ð Þ ¼ xþ yP2
2

� �
P2;

P2
0 þ P2

1 þ P2
2 ¼

1
Nc

:

ð12Þ

This transformation does not affect the solutions of
the system.
For the solution, the condition P0 + P1 = 0 should be

used. This condition together with the condition P2 = 0
turns into an identity the second and third equations.
After some simple transformations, we obtain the anti-
symmetric excitations:

P að Þ
0 ¼ 1ffiffiffiffiffiffiffiffi

2Nc
p ; P að Þ

1 ¼ −
1ffiffiffiffiffiffiffiffi
2Nc

p ;

P að Þ
2 ¼ 0; xa ¼ −1−

y
2Nc

:

Using Equations 4, 5, and 11, it is possible to find the
energy:

Ea kð Þ ¼ Eосн þ εa kð Þ ¼ Eосн−Π−
G
2Nc

−2Λ cos kð Þ: ð13Þ

Next, we use the condition P0 − P1 = 0, which turns
into an identity the first equation in (12). After some
analysis, we can find two types of excitation:

� Symmetrical

P cð Þ
0 ¼ P cð Þ

1 ¼ P cð Þ
2 ¼ 1ffiffiffiffiffiffiffiffi

3Nc
p ; xc ¼ 2−

y
3Nc

:

For these excitations, in analogy to the

antisymmetric, it is possible to obtain the energy:
Ec kð Þ ¼ Eосн þ 2Π−
G
3Nc

−2Λ cos kð Þ: ð14Þ

� Asymmetrical

P нð Þ
0 ¼ P нð Þ

1 ¼ −
1ffiffiffiffiffiffiffiffi
6Nc

p ;

P нð Þ
2 ¼

ffiffiffiffiffiffiffiffi
2

3N с

r
; xн ¼ −1−

2y
3Nc

:

For these excitations, it is also possible to get energy:
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Eн kð Þ ¼ Eосн−Π−
2G
3Nc

−2Λ cos kð Þ: ð15Þ

The energies Ea(k), Ec(k), and Eн(k) contain parameters
Λ = |M|||/2 and Π = |M⊥|/2. As it was noted between
Equations 2 and 3, the relation between these parame-
ters makes the determination of the physical nature of
excitation possible: whether they are electronic or intra-
molecular. Because one of them (Λ) determines the
width of the excited energy bands, and the other (Π)
their positions, this is the basis for the experimental ana-
lysis of the nature of excitations.
There are a few possibilities else for searching for solu-

tions of the system (12). Preliminary analysis shows that
the obtained excitations are peculiar in a more or less
degree for both symmetries: whether it is the symmetry
of the model or the symmetry of the real molecule. The
other solutions of the system (12) need to be analyzed
only in the conditions of the maximum account of the
real structure of an alpha-helix. But the general analysis
of this system shows that the solutions of a new quality
are not present: all of them belong to the asymmetrical
type. However, attention should be paid to the equation
aα,n + 1 − aα,n − 1 = 0, which has led to the requirement
aαn = Pα. This condition is strong enough and essentially
limits the solution: it is a constant in variable n, i.e., does
not have the spatial distribution along an alpha-helix.

Results and discussion
The analysis of the energetics of the protein excitation
From definitions (13), (14), and (15), it ensues that received
excitations are located in accordance with the inequality Ec
(k) > Ea(k) > Eн(k). Thus, Ec kð Þ−Ea kð Þ ¼ 3Π þ G

6Nc
and Ea

kð Þ−Eн kð Þ ¼ G
6Nc

. It can be seen that for the alpha-helical

region of finite length, when the number of turns Nc ≠∞,
the lowest energy is the energy of asymmetric excitation
Eн. Also, it is visible that energy Ec is always strongly sepa-
rated from energies Ea and Eн. Even when the number of
turns Nc⇒∞ and the energies Ea and Eн practically coin-
cide, the energy Ec is separated from Ea and Eн on a value
3Π = 3|M⊥|/2. Amide I excitations manifested experimen-
tally are probably Ec energy.
It is possible to make the supposition that each of the

examined energies executes some, expressly certain,
function. For example, the main function of symmetric
excitations can be activation of muscle proteins. At the
same time, they can activate both membrane and en-
zymatic proteins that are quite often actually observed
in the activation of myosin [9-11].
Antisymmetric excitation energy is not enough to excite

the muscle protein because it lies below the symmetric en-
ergy. Activation of membrane proteins can be their main
function. At the same time, these excitations are able to ac-
tivate enzymatic proteins that are also actually observed
often enough during activation of membranes [11-13].
And, lastly, asymmetrical excitations have only one

function - to activate exceptionally enzymatic activity in
those cases, when membrane and muscular activities are
not needed. That is only for intracellular processes.

Conformational response to the excitation of the
alpha-helical region of the protein molecule
For the analysis of conformational response of the
alpha-helix on the considered excitations, it is necessary
to appeal again to new equilibrium values of the step of
the alpha-helix. From definition (3), it is possible to find
Rnα = R0 · (1 − β|Aαn|

2), where designation is entered:

β≡
D= R0ð Þj j

R0⋅ W == R0ð Þj j . If we consistently apply the model of

dipole interaction between the peptide groups, then β∼ Δd
d ,

where, as mentioned above, Δd ~ 0.29 D and d ~ 3.7 D.
Therefore, in this dipole model [14], β ~ 10−1. Taking into
account the definitions of coefficients Aαn, given in (7), it
is possible to get following:

1. It is possible to obtain the following formula for

symmetric excitations: R cð Þ
nα ¼ R0⋅ 1− β

3Nc

� �
. That is,

all three chains are reduced equally and evenly in
the space. Then the length of every peptide chain
can be appraised, so

L cð Þ
α ¼

XNc

n¼1

R cð Þ
nα≡NcR0−

1
3
βR0≡L0−

βR0

3
:

This change is small and, at first glance, has no

practical significance. But it will be so only in the
classical model of the alpha-helix (Figure 2). If we
consider, for example, that the peptide chains of
myosin themselves form superhelices, then the
effect of contraction increases. This is done by
changing all characteristics of an alpha-helix: the
step of the helix, its radius, and the effective
number of peptide groups on the turn of the
helix. Also, additional self-torsion takes place. The
strengthening of the effect of contraction is deter-
mined by the mutual torsion of long alpha-helical
regions of light faction of myosin and their tor-
sion on actin filaments.

2. For antisymmetric excitations, it is possible to obtain

R аð Þ
n0 ¼ R аð Þ

n1 ¼ R0⋅ 1− β
2Nc

� �
, R аð Þ

n2 ¼ R0. Respective

lengths are as follows:

L að Þ
0 ¼ L að Þ

1 ¼ L0−
βR0

2
; L að Þ

2 ¼ L0≡R0Nc:
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In this type of excitation, one of the peptide chains
does not change (here, it is a chain with the number 2),
and two others are reduced up to the value βR0

2 .
Such asymmetry is enough for the alpha-helix to
take a form of the segment of torus instead of
cylinder (Figure 3). Application of the simple
geometric considerations gives for the radius of
curvature Rk and angle φ:
Rk≡
2
β
⋅
dα
R0

⋅L0≡
2
β
⋅dα⋅Nc; φ≡

β

2
⋅
R0

dα
;

and for displacement Δ, it is possible to get such estimation:

Δ∼
β

2
ffiffiffi
3

p ⋅
R0

dα
⋅L0 ¼ β

2
ffiffiffi
3

p ⋅
R2
0

dα
⋅Nc: ð16Þ

Taking into account the numerical values β ~ 10−1,

R0 = 5.4 Å, and dα = 4.56 Å in (16) gives Δ∼ Nc

5 ðÅÞ.
For the typical number of turns in many enzymes
and membrane squirrel (Nc > 10), displacement will
have an order Δ > 2 Å. This is consistent with the
observed values [11].

3. For asymmetrical excitation, the following values are

implemented: R нð Þ
n0 ¼ R нð Þ

n1 ¼ R0⋅ 1− β
6Nc

� �
, R нð Þ

n2 ¼ R0⋅

1− 2β
3Nc

� �
. The corresponding lengths of peptide

chains equal

L нð Þ
0 ¼ L нð Þ

1 ¼ L0−
βR0

6
; L нð Þ

2 ¼ L0−
2βR0

3
:

Y

Rk
X

da

ure 3 Explanation to estimation of displacement Δ of free
re upper) end of alpha-helix for antisymmetric excitations.
The nature of the distribution of deformation along
the peptide chain for this type of excitation is similar
to that of the antisymmetric excitation. The only
difference is that the chain, which in the previous
case has not changed at all, now has shortening
stronger than the other two. It is possible to
estimate displacement for this case too:
Δ нð Þ ¼ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

β

6Nc
þ 1

3N2
c

dα
R0


 �2
s

:

Here, Δ is the displacement for antisymmetric

excitations, which is determined by Equation 16.
Unlike displacement Δ, displacement Δ(н) ‘directed’
to the opposite side. Executing numerical estimates,
it is possible to set that Δ(н) >Δ, if the number of
turns in the alpha-helix Nc ≤ 14, but at Nc > 14, we
will have Δ(н) <Δ accordingly.
Consequently, asymmetrical excitations demonstrate
two very interesting features. First, it has the lowest
energy and at diminishment of the number of turns
Nc, it falls down yet more. Second, a conformational
response for this type of excitation is the biggest for
Nc ≤ 14. This is typical for enzymatic proteins only.
Conclusions
The general methods [7,15-17] of description of the ex-
cited states of the condensed environments were applied
to the alpha-helix region of a protein molecule. The
alpha-helix is considered as a nanotube, and excitations
of the environment are described as quasiparticles. It is
shown that three different types of excitation exist, and
each of them is probably used by three different types of
protein. The symmetrical type of excitation is used for
muscle proteins, the antisymmetric type of excitation is
used for membrane proteins, and the asymmetric type of
excitation is used for enzymatic proteins. It is possible
that some excitations of asymmetrical type exist, which
are also used by enzymes. The estimations were done for
displacements of the free end of the alpha-helix. The ob-
tained displacements are in agreement with experimen-
tal data. Therefore, the obtained results can be the basis
of the interpretation of the functional properties of pro-
teins characterizing their activity related to their con-
formational changes [11].

Endnotes
aOff-system unit of energy: 1 eV = 1.602 × 10−19 J.
bFor example, in the myosin protein, the helical region

has about 200 turns or up to 700 amino acids.
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