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Abstract

The RESET process of NbAlO-based resistive switching memory devices fabricated by atomic layer deposition is
investigated at low temperatures from 80 to 200 K. We observed that the conduction mechanism of high resistance
state changed from hopping conduction to Frenkel-Poole conduction with elevated temperature. It is found that
the conductive filament rupture in RRAM RESET process can be attributed not only to the Joule heat generated by
internal current flow through a filament but also to the charge trap/detrapping effect. The RESET current decreases
upon heating. Meanwhile, the energy consumption also decreases exponentially. This phenomenon indicates the
temperature-related charge trap/detrapping process which contributes to the RESET besides direct Joule heat.
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Background
NbAlO-based resistive random-access memory (RRAM)
with highly uniform bipolar resistive switching behavior
has been proposed for the embedded application with
multi-level storage capability and excellent reliability [1].
Generally, based on the well-accepted conductive fila-
ment hypothesis to explain the memory functional per-
formance, several nanometer-sized filaments are indeed
found in the so-called forming process. However, the
conductive filament model could not clarify the origin of
energy. Recently, the random circuit breaker network
model [2,3] and conical shape filament model [4,5] are
differently developed to emphasize joule heat contribu-
tion on breaker and thermochemical-type resistance
switching, respectively. The long switching time and
large power consumption of RESET (transition from a
low resistance state (LRS) to a high resistance state
(HRS)) process need improvements [6]. Therefore, it is
important to understand the joule heat generation in re-
sistive switching RESET behavior for the fundamental
understanding. A general thermal chemical reaction
(TCR) model for the RESET process has been studied by
calculating the filament temperature [7]. However, we
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found that only the TCR itself could not explain the whole
RESET process, especially for the RESET behaviors at dif-
ferent temperatures. In this work, we investigated the
RESET process of NbAlO-based resistive switching mem-
ory device in detail at low temperatures and clarified the
involved charge trapping effect.
Methods
A NbAlO film (10 nm) was fabricated on a Pt/SiO2/Si
substrate via atomic layer deposition (ALD) at 300°C
using Al(CH3)3 and Nb(OC2H5)5 as the precursor and
H2O as the oxygen source. After deposition, the sample
was post-annealed in O2 ambient at 400°C for 10 min.
The TiN top electrodes with the diameter of 100 μm
were fabricated by reactive magnetron sputtering. Chem-
ical bonding state and the microstructure of the NbAlO
layer was measured through X-ray photoelectron spec-
troscopy (XPS) and transmission electron microscopy
(TEM), respectively. The compositions of NbAlO were
1:2:5.5, as confirmed through Rutherford backscattering
methods. The samples were placed on a cryogenic
Lakeshore probe station (Lake Shore Cryotronics, Inc.,
Westerville, USA) and cooled with nitrogen liquid. The
electrical characteristics were measured at increasing
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temperatures from 80 to 200 K in an interval of 10 K
using a Keithley 4200-SCS semiconductor parameter
analyzer (Keithley Instruments Inc., Ohio, USA) with the
voltage applied on top electrode of TiN while the
bottom Pt electrode was grounded. Because of the over-
shoot phenomenon with a small current compliance [8],
5 mA was chosen as the current compliance to protect
the samples from electrical breakdown during the SET
(transition from HRS to LRS) process.
Figure 2 The XPS spectra of NbAlO film chemical composition.
(a) The Al 2p peak shows the Al2O3 and (b) the Nb 3d3/2 and 3d5/2
peaks show the Nb2O5 and NbO2, respectively. The B.E. means
binding energy in x-axis.
Results and discussion
From the cross-sectional TEM image of the NbAlO film,
as presented in Figure 1, it was found that the NbAlO
film has an amorphous structure, as further confirmed
from the electron diffraction pattern in the inset of
Figure 1. Most oxides grown by ALD technique at 300°C
are normally amorphous. In this study, the process
temperature is 300°C, while the crystallized temperatures
of Nb2O5 and Al2O3 are both above 400°C. The chemical
compositions of NbAlO films were shown in Figure 2.
Figure 2a presents the Al 2p spectrum of the film. The
peak position is found to be at the 74.4 eV, which indicates
that Al tends to be oxidized. The Nb 3d spectra can be
divided into two edge splits: Nb 3d3/2 and Nb 3d5/2. The
Nb 3d3/2 and 3d5/2 peaks are located at 210.2 eV for
Nb2O5 [9] and 207.5 eV for NbO2 [10]. Figure 3 shows the
typical bipolar resistive switching characteristics of NbAlO
films at temperatures 80 to 200 K. By sweeping the posi-
tive voltage above a certain value (1.5 to 3 V), an abrupt
current increase occurs, indicating the film in LRS. It
means that the so-called SET process occurs. There is no
Figure 1 The cross-sectional TEM image of NbAlO film.
obvious difference after more than 1,000 cycles for the
current–voltage switching behavior from 80 to 200 K, as
shown in Figure 3. It suggests that the conductive
filaments statistically formed in the SET process have the
same density, diameter, and current conduction. Hence,
the difference in RESET current and energy consumption
cannot be as ascribed to the random variation of uncertain
conductive filament formation. In other words, the effect
of SET process on the RESET difference can be safely
excluded. Meanwhile, current–voltage curves after the
RESET process in many cycles also keep the same route,
indicative of the high repeatability of RESETcharacteristics
of the NbAlO film, which facilitates our quantitative calcu-
lation and simulation of the process in the following
research. To clarify this difference and to understand the
mechanism of the RESET process, we consider the RESET
from an energy point of view combined with joule heat-
induced interface thermal reaction [7] and charge trap/
detrapping effect [11-14].
Figure 4 shows the statistical results of the typical electrical

parameters of RRAM obtained at different temperatures.
The LRS resistance, RESET voltage, and RESET current



Figure 3 The typical resistive switching current–voltage curve of NbAlO-based RRAM device at different environmental temperatures.
(a) 80, (b) 120, (c) 160, and (d) 200 K. The inset in (c) shows the schematic diagram of measured device structure and configuration. The I-V curve
in different color indicates different resistive switching cycles.
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value distribution are shown in Figures 4a,b,c, respectively.
The calculated integral energy consumption in the RESET
at elevated temperature shows an exponential decrease in
Figure 4d, as fitted by the solid line using the following
equation:
Figure 4 Statistical distribution of device parameters and the calculat
(a) LRS resistance (measured at 0.3 V), (b) RESET voltage, and (c) RESET curr
consumption during the RESET process as calculated. Here, the small squar
device parameters, and the large square indicates the distribution factors o
line in (d) is the average value line, and the red line is the statistical value f
Ecal ¼
Z treset

0
VIdt ¼ I2resetR2

3k
¼ E exp

¼ 5:49 � exp 197:8=Tð Þ; ð1Þ
ed correlation between the energy versus sample temperature.
ent statistics at different temperatures. (d) Statistics on energy
e in the middle of the large square is the average mean value of the
f 75% (top line) and 25% (bottom line), respectively. The black solid
it line.
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where the voltage sweeping speed k = V/t, and Vreset is the
reset voltage from LRS to HRS. Here, we suppose the
identical energy dissipation of one cell in different RESET
processes. The integration energy curve agrees well with
the experimental fitting curve as shown in Figure 4d. The
energy decays exponentially during the RESET with the
elevated environmental temperature. Therefore, when charge
detrapping dependence on environmental temperature is
involved as in Equation 1, the calculated mean value of
energy consumption in RESET decreased exponentially,
which in good agreement with experimental results in
Figure 4d. Although the switching parameters such as
SET voltage, RESET current, and resistance of LRS or
HRS vary with cycles, the statistical energy consumption
still decays exponentially with the elevated environmental
Figure 5 Experimental I-V data of HRS at different
temperatures. (a) Linear fitting for the I-V curve at higher
temperatures (80 to 130 K) using a log-log scale. The slope of the
fitting curve is between 1 and 2, indicating that the conducting
mechanism is electron hopping. (b) Experimental I-V data of HRS at
higher temperatures (140 to 200 K). The good linear relationship
between ln(I/V) and √V indicates that the electronic behavior of HRS
can be predicted by utilizing Poole-Frenkel effect. Y coordinates of
line were added with a constant to separate each line. The V1/2 in
x-axis means √V in the (b), and it shows the good linear relationship
between ln(I/V) and V1/2 in the temperature range 140 to 200
K obviously.
temperature when involving the charge trapping effect at
low temperature.
Figure 5 is the experimental I-V data of HRS at differ-

ent temperatures and the fitting curves by hopping and
Frenkel-Poole conduction mechanism, respectively. The
electron conduction in HRS of NbAlO at 80 to 130 K as
shown in Figure 5a can be fitted well with hopping
model because of the characteristic temperature depend-
ence. A linear relationship between ln(I/V) vs. V1/2 can
be obtained at 130 to 180 K as shown in Figure 5b. It
indicates that the I-V relation obeys the Frenkel-Poole
conduction mechanism with the expression as in the
equation below:

I∝V exp 2α
ffiffiffiffi
V

p
=T� qϕb=kT

� �
; ð2Þ

where I is the current, q is the electron charge, V is the
applied voltage, α is a constant, b is the energy barrier
height, k is Boltzmann’s constant, and T is the temperature
in Kelvin. Therefore, the transition temperature of 130 K
from variable hopping conduction to Frenkel-Poole
conduction for NbAlO HRS is confirmed and attracts
research attention. It is believed that the density of trapped
electrons or the local states in the oxide film play an
important role as previous report described [15,16]. The
temperature transition region should be different for differ-
ent materials because of the local states and defect density
differences.

Conclusions
The conductive filament rupture in RRAM RESET
process can be attributed not only to joule heat generated
by internal current flow through a filament but also to the
charge trap/detrapping effect. A new conduction mode is
discussed from hopping conduction to Frenkel-Poole
conduction with elevated temperature. This finding will
help us understand the physical mechanism of resistive
switching deeply in RRAM application.
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