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Abstract

We analyzed the electromagnetic (EM) shielding effectiveness in the Ka band (26 to 37 GHz) of highly amorphous
nanometrically thin pyrolytic carbon (PyC) films with lateral dimensions of 7.2 × 3.4 mm2, which consists of
randomly oriented and intertwined graphene flakes with a typical size of a few nanometers. We discovered that the
manufactured PyC films, whose thickness is thousand times less than the skin depth of conventional metals,
provide a reasonably high EM attenuation. The latter is caused by absorption losses that can be as high as 38% to
20% in the microwave frequency range. Being semi-transparent in visible and infrared spectral ranges and highly
conductive at room temperature, PyC films emerge as a promising material for manufacturing ultrathin microwave
(e.g., Ka band) filters and shields.
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Background
Due to the importance of satellite communication, elec-
tromagnetic compatibility in the Ka band (26 to 37 GHz)
has recently become an important concern. The band
overcrowding requires enhancing electromagnetic inter-
ference (EMI) shielding effectiveness (SE), i.e., develop-
ment of novel coatings, shields, and filters that prevent
degradation of the performance of the systems operating
in densely populated EM environment [1,2]. It is worth
noting that compared to conventional metal-based EMI
shielding materials, using carbon-based conducting com-
posites is advantageous for satellite applications because
of their low weight, small thickness, and flexibility [3,4].
These include polymer composites containing exfoliated
graphite, graphene nanoplatelets, carbon black, carbon
fibers and nanofibers, carbon nanotubes (CNT), and car-
bon onions. Shielding effectiveness of these carbon-based
coating has been extensively investigated in the last
decade (see reviews [3,4] and the references therein).
The EMI shielding effectiveness of a material is

defined as SE (dB) = 10 log (Pt/Pi) [5], where Pt and Pi
are the transmitted and incident electromagnetic powers,
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respectively. Thus, the magnitude of the SE is determined
by the material transmittivity, which depends on the ab-
sorption, reflection, and scattering losses of the EM en-
ergy. In homogeneous materials, absorption and reflection
losses dominate the SE. The absorption-related losses in
conventional metals are determined by the relationship
between the metal thickness and the skin depth, which
decreases with the frequency [6]. The reflection occurs
due to the impedance discontinuity at metal-air inter-
face. The reflection losses decrease at higher frequencies
since material impedance increases. The absorption
mechanism predominates when the coating thickness is
comparable with the skin depth or at sufficiently high
frequencies when the conductivity decreases [6]. Thus,
conventional metallic coating being much thinner than
EM skin depth should, strictly speaking, be transparent
to microwave radiation.
Breakthrough in the EMI technology has been recently

made by Bosman et al. [7]. Using a simple equivalent
transmission line model for the thin film as a lumped
resistor they demonstrated that an ultrathin film may
absorb up to 50% of the incident power despite the
fact that its thickness is only a small fraction of the
skin depth [7].
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Very recently, we have demonstrated [8] that the pyro-
lytic carbon (PyC) films with thickness of several tens of
nanometers satisfy the requirements imposed by the
theory [7]. Specifically, the PyC film thickness is much
smaller than the skin depth, which is much smaller than
the wave length. Thus these films should allow one to
achieve high SE. We showed in [8] that sheet resistance
of these nanometrically thin films is close to that of
multilayer graphene flakes [9,10] and carbon nanotubes
[11], which have already displayed unique EMI shielding
ability [3,4,11,12]. However, in contrast to graphene and
carbon nanotubes, a catalyst-free synthesis allows one to
deposit PyC films directly on both dielectric and metallic
substrates of arbitrary size and shape opening a new
route towards fabrication of ultrathin EMI protective
coatings with enhanced shielding effectiveness.
In this paper, we study experimentally the EMI shield-

ing ability of an ultrathin PyC film in Ka band (26 to 37
GHz). The thickness of the film is 25 nm, which is close
to the PyC skin depth at 800 nm [13]. We demonstrate
that despite the fact that the film is several thousand
times thinner than the skin depth of conventional metals
(aluminum, copper) in this frequency range, it can ab-
sorb up to 38% of the incident radiation.
The paper is organized as follows: the details of sample

preparation and microwave (MW) measurements are
given in the ‘Methods.’ Experimental data together with
their physical interpretation are collected in the ‘Results
and discussion.’ The ‘Conclusion’ summarizes the main
results as well as some important possible applications
of the functional properties of PyC films.

Methods
PyC film fabrication
Pyrolytic carbon is amorphous material consisting of dis-
ordered and intertwined graphite flakes [14]. The histor-
ical and literature review of PyC film production via
chemical vapor deposition (CVD) method together with
fundamentals of model-based analysis of PyC deposition
can be found in [14].
In our experiment, the PyC film was deposited on

0.5-mm-thick silica substrates in a single-step CVD
process. The CVD setup consists of a quartz vacuum
chamber that was heated by tube oven (Carbolite CTF
12/75/700), and a computerized supply system enabling
a precise control of the gas pressure and composition.
We employed CVD process with no continuous gas flow
inside the chamber to reduce gas consumption and,
more importantly, to allow more time for polyaromatic
structure formation. The loading of the clean quartz sub-
strate into the CVD chamber was followed by purge filling
of the chamber with nitrogen (twice) and then with hydro-
gen to ensure a clean process. After that the chamber was
filled with hydrogen up to the pressure of 5.5 mBar and
was heated up to the temperature of 700°C at the rate of
10°C/min. At 700°C, the chamber was pumped down, and
the hydrogen-methane gas mixture was injected and
heated up to a temperature of 1,100°C. CH4/H2 gas mix-
ture was kept at this temperature for 5 min and then was
cooled down to 700°C. After that the chamber was
pumped down, filled with hydrogen at the pressure of
10 mBar, and cooled down to room temperature.
The thickness of the deposited carbon film measured

by a stylus profiler (Dektak 150, Veeco Instruments,
Tucson, AZ, USA) was as small as 25 ± 1.5 nm. The
thickness was averaged over ten different points. Since
in our CVD setup there was no gas flow during the
graphitization, the CH4/H2 ratio and pressure change
simultaneously affecting the PyC deposition rate [15]. At
low pressure, this process was well controllable and
enabled deposition of the ultrathin films with prescribed
parameters. After the CVD process, both sides of the
quartz substrate were covered by the PyC film. In order to
characterize the film by microwave measurement, one of
the substrate surfaces was cleaned out with harsh oxygen
plasma (200 W/20 sccm/3 min). In the present communi-
cation, we investigate the electromagnetic properties of
PyC produced at 75:20 CH4/H2 ratio, which corresponds
to 25-nm thickness of films.
Optical microscope image of the PyC film deposited

on silica substrate is presented in Figure 1a. One can
watch that the film is semitransparent. Scanning elec-
tron microscopy image of the film was obtained by scan-
ning electron microscopy (SEM) LEO - 1455 Vand
(Cambridge, UK). One can observe from Figure 1b that
the PyC film shows a good homogeneity. In addition to
a stylus profiler data, PyC thickness was controlled by
atomic force microscope (AFM; Solver P47 PRO, NT-
MDT, Moscow, Russia). The PyC film was scraped by a
blade avoiding damage of the SiO2 substrate. The AFM
image of the PyC film fabricated on quartz substrate
(Figure 1c) shows a sharp step-like edge allowing us to
perform independent measurement of the film thickness.
The lateral position of scratch in the PyC film and the
height profile (i.e., PyC film thickness) are presented in
Figure 1c,d.
Raman spectroscopy measurements reported else-

where [8] revealed that morphologically thin PyC film
produced at our experiment is composed of randomly
intertwined graphite crystallites of the size less than
5 nm but also consisting small amounts of amorphous
carbon and sp2-sp3 bonds [8].

MW characterization settings
The microwave measurements were made using a scalar
network analyzer R2-408R (ELMIKA, Vilnius, Lithuania),
including sweep generator, waveguide reflectometer, and
indicator unit (personal computer). The IEC 62431:2008



Figure 1 Optical microscope, SEM, and AFM images. (a) Optical microscope image of PyC thin film of 25-nm thickness deposited on silica
substrate. (b) SEM image of the film surface area scraped by a blade. AFM image of the PyC film: (c) lateral position and (d) height profile of the
PyC film. Optical image of the PyC deposited film on the quartz substrate is presented in (a). Scanning electron microscopy was done by SEM
LEO - 1455 Vand and shows good homogeneity of PyC film (b). PyC thickness was controlled by AFM (Solver P47 PRO, NT-MDT). Corresponding
AFM image of PyC film deposited on the substrate (the lateral position) is presented in (c). The height profile (the PyC film thickness) is presented
in (d).
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(E) standard specifying the measurement method for the
reflectivity of EM materials was used. The EM response
the PyC fim as ratios of transmitted/input (S21) and
reflected/input (S11) signals has been measured within
26- to 37-GHz frequency range (Ka band). The frequency
stability of the oscillator was controlled by frequency
meter and was as high as 10−6. The power stabilization
was provided on the level of 7.0 mW ± 10 μW. Measure-
ment range of EM attenuation was from 0 to −40 dB.
Basic measurement errors of EM attenuation over the
range 0 to 25 dB was δ|S21| = ±(0.6 + 0.06|S21|). The lat-
eral dimensions of the PyC film were 7.2 × 3.4 mm2, i.e.,
the film was deposited on the silica substrate that fits pre-
cisely the waveguide cross-section; S-parameters were
measured by subsequent insertion of the specimen into
the waveguide.

Results and discussion
The CVD process parameters and properties of the
obtained PyC film are summarized in Table 1.
Ratios of transmitted/input (S21) and reflected/input (S11)

signals measured within 26- to 37-GHz frequency range
(Ka band) are shown in Figure 2a. Reflectivity R = |S11|

2,
transmittivity T = |S21|

2, and absorptivity A = 1 − R − T are
presented in Figure 2b. Since the reflectivity and absorp-
tivity of a bare silica substrate are 20% to 25% and 0,
respectively, the substrate contribution dominates the
reflected signal (approximately 28% of incident power) in



Table 1 Parameters of the CVD process and physical properties of the obtained PyC film

CH4/H2 ratio Press. (mBar) Thickness (nm) Roughness Ra (nm) Optical transmittance at a
wavelength of 550 nm

Sheet resistance averaged over
ten different samples

75:20 31 25.2 ± 0.8 1.07 37% [8] 200 Ω/sq [8]
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Figure 2, while absorption losses are due to the presence
of the PyC film. EM absorption of PyC film is found to be
as high as 38% to 20% and slightly decrease with the
frequency.
It has been shown [7] that absorbance and reflectivity

of the free-standing metal film with thickness much less
than the skin depth are frequency independent at nor-
mal incidence. In our experiment, the frequency depend-
ence of reflectance/absorbance is due to (1) waveguide
dispersion and (2) interference in the 0.5-mm-thick silica
substrate. The detailed theoretical and numerical ana-
lysis of these effects requires taking into account the
waveguide modes structure and is beyond the scope of
this paper.
Since the film thickness (25 nm) is much smaller than

the EM skin depth for conventional metals (a few microns),
which is much smaller than the wavelength (1 cm), the PyC
film was expected to be transparent to microwaves. How-
ever, we found that in the Ka band, the 25-nm-thick PyC
film demonstrates reasonably high absorption losses, which
results in the EMI SE as high as 4.75 dB at 26 GHz (see
Figure 2a). Thus, the 25-nm-thick PyC film has EMI SE
comparable with that of 2.5-μm-thick indium thin oxide
film [16]. PyC film microstructure is a key factor affecting
its high-frequency conductivity and EMI shielding ability.
Figure 2 EM properties of the 25-nm-thick PyC in Ka band. (a) EMI SE
transmitted/input (S21, EMI SE) and reflected/input (S11) signals measured w
transmitivity (T) and absorptivity (A) are connected with the measured S-pa
measured and calculated values of R, T, and A are presented in (b).
The intrinsic spatial inhomogeneity of the PyC films results
in strong scattering of EM wave that could lead to the
‘anomalous’ absorption.
It is of interest to compare our data with EMI SE of

conventional polymers filled with nanocarbon inclusions
(carbon nanotubes and carbon onions), which have been
recently suggested for conducting and EM interference
shielding applications. As it has been shown in [11], the
DC conductivity of multiwalled CNT in poly(methyl
methacrylate) (PMMA) increases with the carbon mass
fraction, showing typical percolation behavior, and EMI
SE reaches 5 dB only for 10 wt.% of raw CNT loading at
5 GHz. At room temperature, the high-frequency con-
ductivity of multiwalled CNTs embedded into PMMA in
small content (up to 2 wt.%) [17] also turns out to be
lower than that of PyC films; only when the concentra-
tion reaches 5 wt.% of CNTs in 1-mm-thick PMMA, it
provides EMI SE due to absorption at the level of 35%,
compatible with that for 25-nm-thick PyC film. Within
1-mm-thick epoxy resin, 0.5 wt.% of single- and multi-
walled CNTs gave 2.5 to 2.8 dB of EM attenuation at
30 GHz [18]. Absorbance of carbon onions annealed at
high temperatures (1,850 K) embedded in 15 wt.%
into 1-mm-thick PMMA/epoxy [19] is the same (approxi-
mately 30%) as for 25 nm of PyC film.
and |S11| (b) R = |S11|
2, T = |S21|

2, and A = 1 − R − T. Ratios of
ithin 26- to 37-GHz frequency range is presented in (a). Reflectivity (R),
rameters as the following: R = |S11|

2, T = |S21|
2, A = 1 − R − T. Both
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Conclusions
The conductivity of the PyC films at room temperature
is comparable with that of the chemically derived gra-
phene flakes and polymers filled with large amount of
CNT (5 wt.% and higher). However, in contrast to these
carbon-based coatings, the studied PyC film is semi-
transparent in visible and infrared ranges. PyC films,
being thousands times thinner than the skin depth, pro-
vide reasonably high EM attenuation in microwave fre-
quency range due to their high absorptivity. Specifically,
the studied 25-nm-thick PyC film absorbs as high as
38% of the incident radiation at 27 GHz. Such an EMI
SE is compatible with that of 1-mm-thick coatings con-
taining 1.5 to 5 wt.% of various nanosized carbon forms
including graphene nanoplatelets, carbon nanotubes, etc.
(see [3] and the references therein). The extremely small
thickness and weight of PyC films makes them especially
attractive for application in satellite and airplane com-
munication systems. Moreover, PyC films can be depos-
ited on both dielectric and metal substrates of any shape
and/or size using conventional and inexpensive CVD
technology. Thus, PyC could be used as ultrathin optic-
ally semitransparent coatings suitable for Ka and other
microwave frequency bands.
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