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Large-scale and controllable synthesis of
metal-free nitrogen-doped carbon nanofibers and
nanocoils over water-soluble Na2CO3
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Abstract

Using acetylene as carbon source, ammonia as nitrogen source, and Na2CO3 powder as catalyst, we synthesized
nitrogen-doped carbon nanofibers (N-CNFs) and carbon nanocoils (N-CNCs) selectively at 450°C and 500°C,
respectively. The water-soluble Na2CO3 is removed through simple washing with water and the nitrogen-doped
carbon nanomaterials can be collected in high purity. The approach is simple, inexpensive, and environment-benign;
it can be used for controlled production of N-CNFs or N-CNCs. We report the role of catalyst, the effect of pyrolysis
temperature, and the photoluminescence properties of the as-harvested N-CNFs and N-CNCs.
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Background
Since Iijima’s paper on helical carbon nanotubes, carbon
nanomaterials (CNM) such as carbon nanotubes (CNT)
and carbon nanofibers (CNF) have attracted great atten-
tion for their unique and outstanding electrical and
mechanical properties [1-4]. The helical CNT are com-
posed of five-membered or seven-membered rings,
having carbon atoms of sp2 and sp3 hybridization [5,6].
It is envisaged that helical CNT exhibit novel and pecu-
liar properties that are different from those of linear
CNT. It has been suggested that CNM can be utilized in
hydrogen storage [7,8], microwave absorption [9], and
field emission [10,11]. Using CNM, scientists tried to fab-
ricate nanosized electromagnetism devices [12-14] such as
solenoid switch [15,16], miniature antenna [17,18], energy
converter [19,20], and sensor [21,22].
For CNM generation, methods such as arc discharge,

laser ablation, hydrothermal carbonization, solvothermal
reduction, and chemical vapor deposition (CVD) are
used [23-28]. Nonetheless, it is common to have metal
impurities in the products, and the intrinsic properties
of the as-obtained CNM are uncertain. The problem of
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metal impurities hinders further researches on CNM
especially those related to electromagnetism features
[29,30]. It is tedious and costly to remove metal impur-
ities such as those of iron-group elements or their alloys
[31]. Furthermore, unexpected defects or contaminants
could be introduced into the CNM during purification
procedures.
As a traditional method, CVD has its advantages

[32,33]. By regulating parameters such as catalyst amount,
reaction temperature, source flow rate, one can obtain
different kinds of CNM. It is possible to control the CVD
process for a designated outcome by adopting a particular
set of reaction conditions [34,35]. Using acetylene as
carbon precursor, Amelinckx et al. [36], Nitze et al. [37],
and Tang et al. [38] obtained CNM with high purity and
selectivity. Nevertheless, there are disadvantages such as
high reaction temperature and outgrowth of desired
product [28,39]. As for the growth mechanism of CNT in
CVD processes, there are still controversies [40,41].
By doping foreign elements such as nitrogen and

boron into the graphite lattices of CNM, Wang et al.
[42], Ayala et al. [43], and Koós et al. [44] induced crystal
and electronic changes to the structures of CNM [42-44].
It is noted that as support for palladium nanoparticles,
helical CNM show excellent properties in electro-catalytic
applications [45,46]. According to Franceschini et al. [47]
and Mandumpal et al. [48], the introduction of nitrogen
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restrains the aggregation of vacancies, resulting in defects
and dislocations, as well as amplified curvature of graphite
planes. The results of both experimental and theoretical
studies demonstrate that compared to pure CNT, nitro-
gen-doped CNT show enhanced field emission properties
and there is a shift of the dominant emission towards
lower energies [49-51]. Through theoretical studies of
heteroatom-substituted graphite systems, Hagiri et al.
suggested that different heteroatom arrangements cause
different spin-stable singlet and triplet states and that the
substituted nitrogen atom as a spin cap induces the π
electron excess [52]. When it comes to CNT utilization,
high incorporation of nitrogen is desirable in promoting
porosity and electrochemical reactivity of CNT. On the
other hand, if CNT are supposed to be applied in
semiconductor technology, low nitrogen-doping density is
necessary.
Recently, we reported the large-scale synthesis of

various kinds of non-doped CNM that are metal-free
[53-55]. Herein, we report the use of Na2CO3 as catalyst
for the selective formation of nitrogen-doped CNF
(N-CNF) and nitrogen-doped CNC (N-CNC). We used
Na2CO3 because it is water-soluble and can be removed
from N-CNM through steps of water washing. We found
that the Na2CO3 catalyst prepared by us is active and
selective for mass formation of N-CNF and N-CNC. By
means of CVD using Na2CO3 as catalyst, high-purity
N-CNM can be obtained after washing the products
with deionized water and ethanol. The approach is
simple, inexpensive, and environment-benign, and can
be used for mass production of high-purity N-CNF
and N-CNC.

Methods
All materials used were commercially available and
analytically pure. In the present study, we employed
Na2CO3 as catalyst. First, we mixed 10 g of Na2CO3

(in powder form) in 200 ml of deionized water at
room temperature (RT) with continuous stirring. Once a
transparent solution was obtained, the solution was kept
at 80°C for several hours and allowed to cool down to RT
for the precipitation of a white powder. The powder was
filtered out, dried, and ground into tiny particles.
We placed 0.5 g of catalyst at the center of a ceramic

boat with two open ends. The boat was then put inside a
quartz tube with a thermocouple attached to its center.
For the CVD reaction, we used acetylene as carbon
source and ammonia as nitrogen source. After the reac-
tion chamber was purged with argon for the elimination
of oxygen, the sources were introduced into the system
at either 450°C or 500°C at a C2H2/NH3 flow rate ratio
of 1:1 for 6 h. To study the effect of changing the flow
rate ratio, we also introduced acetylene and ammonia at
a C2H2/NH3 flow rate ratio of 5:1 at 450°C for 6 h. After
the reaction, argon was again introduced to protect the
product from oxidation until the system was cooled
down to RT. To remove the catalyst and to avoid
organic outgrowth, the as-obtained products were
repeatedly washed with deionized water and ethanol.
Compared to the methods commonly used for CNM
purification, the one used in the present study causes no
damage to the desired product.
The morphologies of samples were examined using a

transmission electron microscope (TEM) operated at an
accelerating voltage of 200 kV and a field emission
scanning electron microscope (FE-SEM) operated at an
accelerating voltage of 5 kV. Fourier transform infrared
(FTIR) spectroscopic studies of samples (in KBr pellets)
were conducted over a Nocolet 510P spectrometer
(Thermo Nocolet, Stanford, CT, USA). The surface
analysis of products was carried out by means of X-ray
photoelectron spectroscopy (XPS, PHI 5000 VersaProbe,
UIVAC-PHI Inc., Chigasaki, Kanagawa, Japan). The pro-
ducts were examined on an X-ray powder diffractometer
(XRD) at RT for phase identification using CuKα radi-
ation (model D/Max-RA, Rigaku Corporation, Tokyo,
Japan). Raman spectroscopic investigations were per-
formed over a Jobin-Yvon Labram HR800 instrument
(Horiba, Ann Arbor, MI, USA) with 514.5-nm Ar laser
excitation. The photoluminescence (PL) spectra were
collected at RT over a spectrofluorophotometer (Shimadzu
RF-5301 PC; Shimadzu Co. Ltd., Beijing, China) using a
Xe lamp as light source. For PL investigation, about
0.1 mg of sample was ultrasonically dispersed in 5 ml of
deionized water. Thermoanalysis was carried out using a
thermal analysis system (NETZSCH STA 449C; NETZSCH
Company, Shanghai, China) with the sample heated in air
at a rate of 20°C/min.

Results and discussion
We observed that when reaction temperature is higher
than 500°C or lower than 400°C, the yield of CNM is
small (TEM observation). Above 500°C, there is heavy
decomposition of Na2CO3 into sodium oxide and CO2, a
situation unfavorable for CNM formation. Below 400°C,
the decomposition of acetylene becomes unfavorable.
Since there could be Na2CO3 decomposition at certain
reaction temperatures, we do not choose weight change
as a means to measure product yields. Shown in Table 1
are the conditions used for the generation of CNM.
Figure 1 shows the XRD patterns of the as-obtained

and purified samples. The peaks of Na2CO3 can be
indexed to the monoclinic phase of Na2CO3 (JCPDS
37–0451) with a = 8.906 Å, b = 5.238 Å, and c = 6.045 Å.
Figure 1a,b is the patterns of C450 and C450N before
and after purification, respectively. It is apparent that
there are graphite carbon and Na2CO3 in CNM and
N-CNM before purification. After repeated washing



Table 1 Preparation summary of samples

Reaction temperature
(°C)

Flow rate ratios
(C2H2/NH3)

Sample name

450 C2H2 only C450

450 5:1 C5N1

450 1:1 C450N

500 1:1 C500N
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with water and ethanol, there is complete elimination
of Na2CO3 as well as ethanol-soluble organic out-
growth. With the incorporation of nitrogen, there is
decline of graphite signal intensity.
Figure 2 shows the FE-SEM and TEM images of the

purified samples. The selectivity to carbon species was
determined statistically according to the number of
counts of CNM at different regions of the TEM and
FE-SEM images. The images of C5N1 are not given
here for they are similar to those of C450 and
C450N. As shown in Figure 2a,d, the major constitu-
tion of C450 is long and composed of linear carbon
nanofibers (LCNF). The rest is irregular carbon com-
plexes, and there is no detection of helical carbon
nanofibers (HCNF). According to the TEM images, the
average diameter of LCNF is ca. 20 nm. In other words,
LCNF can be synthesized in large scale with high selectiv-
ity using this method. As shown in Figure 2b,e, the major
product of C450N is still LCNF, but there is sighting of
helical structures. As shown in the inset of Figure 2b,
there are sightings of long HCNF. The TEM images
indicate that the obtained LCNF and HCNF have average
diameter of ca. 30 nm. The results show that with the
doping of nitrogen into graphitic lattices, there is change
in CNM morphology: the generation of helical structures.
When the reaction temperature is 500°C, the major
product of C500N is the long spiny carbon nanofibers
(SCNF) (Figure 2c,f), having average diameter of ca.
Figure 1 XRD patterns of (a) as-obtained and (b) purified samples.
100 nm. It is known that reaction temperature is a param-
eter that affects the synthesis of nanomaterials in terms of
morphology, structure, and component. Through the
control of morphology, structure, and/or component,
it is possible to obtain CNM of particular properties.
In the case of long SCNF, the material is enriched
with multi-pillar structures and is relatively large in
specific surface area. With such physical properties,
the material can be used as support for better disper-
sion of nanoparticles.
XPS O1s, C1s, and N1s spectra were obtained for the

determination of surface composition and bonding
environment of C and N atoms of the purified samples.
The nitrogen content of a particular product is defined
as 100 N/(C + N +O) at.%. As depicted in Table 2, the
amounts of nitrogen in C450, C5N1, C450N, and
C500N are 0%, 1.77%, 2.86%, and 2.10%, respectively. It
is noted that the oxygen contents of the four samples
are about 4%. Based on the results, we deduce that a rise
of nitrogen source at reaction temperature of 450°C re-
sults in products higher in nitrogen content. However,
with a rise of reaction temperature from 450°C to
500°C, there is a slight decline of nitrogen content. It
is plausible that NH3 decomposition is enhanced with
temperature rise, but the concurrent decomposition of
catalyst goes against the formation of nitrogen-doped
CNT. That C500N is lower than C450N in nitrogen
content is a net consequence of the two actions.
According to some researches, the electronic proper-

ties of CNM can be tuned by doping nitrogen atoms
into the carbon lattices and be regulated by controlling
the type, concentration, and content of dopants [56,57].
We observe that C450, C5N1, C450N, and C500N show
C1s, N1s, and O1s peaks at around 284, 400, and
532 eV, respectively (Figure 3a). As shown in Figure 3b,
the C1s peak can be deconvoluted into two components
at 284.1 and 285.8 eV. The stronger one at 284.1 eV is
ascribed to the carbon of sp2-hybridized C-C bonds



Figure 2 FE-SEM and TEM images of C450, C450N, and C500N. FE-SEM images of (a) C450, (b) C450N, and (c) C500N, and the TEM images
of (d) C450, (e) C450N, and (f) C500N (insets are the corresponding high-magnification images).
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whereas that at 285.8 eV to carbon of C-N bonds. There
are three primary statuses of nitrogen configuration in
nitrogen-doped CNMs: graphitic (substitutional nitrogen),
pyridine-like, and pyrrole-like. In order to analyze the
electronic state of nitrogen atoms in CNMs, we focused
our attention especially to the N1s spectra, as revealed in
Figure 3c. The peak around 398.3 eV is attributed to
sp3-hybridized nitrogen of the tetrahedral phase; the
nitrogen is pyridine-type and is connected with the
defective graphite sheets. The peak at 399.8 eV is
ascribable to nitrogen with a local structure alike that
of pyrrole, and the nitrogen is hence considered as
pyrrole-type. The peak at 401.0 eV corresponds to
sp2-hybridized nitrogen of trigonal phase, and the
nitrogen is graphite-type or substitutional type. The
composition of the three types of nitrogen is reflected
by the area ratio of the corresponding N1s peaks.
With rise of reaction temperature from 400°C to 500°C,
there is a significant increase of graphitic nitrogen relative
to that of pyridine-type nitrogen. It is deduced that the
formation of graphitic configuration becomes more favor-
able with the rise of temperature.
Figure 4 shows the Raman spectra of C450, C5N1,

C450N, and C500N. Each of the samples exhibits two
Table 2 Nitrogen content of samples

Sample name Nitrogen content (at.%)

C450 0

C5N1 1.77

C450N 2.86

C500N 2.10
peaks. The one at about 1,340 cm−1 (called D band) is
associated with amorphous carbon relating to the vibra-
tion of carbon atoms with dangling bonds of disordered
graphite. The peak at about 1,600 cm−1 (called G band)
is related to the double-degenerate E2g mode of graph-
ite, corresponding to the vibration of triple-degenerate
sp2 hybrid bond. The intensity ratio of G band and D
band (IG/ID) is generally used to identify the crystallinity
of graphite. Lower IG/ID means more defect or vacancy.
The intensity ratios of C450, C5N1, C450N, and C500N
are listed in Table 3.
Compared with C5N1, C450N is lower in IG/ID value.

The C2H2/NH3 flow rate ratio for the formation of
C5N1 is 5:1 whereas that of C450N is 1:1. In other
words, with a source flow richer in nitrogen, there is rise
of nitrogen content, and with more defects or vacancies
in N-CNM, there is decline of IG/ID value. With the rise
of reaction temperature from 450°C to 500°C, there is
slight decrease of nitrogen content but enhanced for-
mation of amorphous carbon, and the net result is the
further decline of IG/ID value.
The PL spectra of C450, C5N1, and C450N obtained

with an excitation source of 220 nm wavelength are
showed in Figure 5a. It is known that pristine CNM
exhibits strong UV PL at 368 nm at RT. In the present
study, we find that by doping of nitrogen into CNM,
there is enhancement of UV PL, and PL signal intensifies
with the rise of nitrogen content. The peak at 468 nm is
a sideband peak, and its intensity is usually weaker than
that of 368 nm. The super peak at about 440 nm is the
double wavelength of 220 nm attributable to the exci-
tation wavelength. In Figure 5b, with the excitation



Figure 3 XPS spectra of the purified samples. (a) Survey scan, (b) C1s spectra, (c) N1s spectra, and (d) illustration of nitrogen configuration.
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wavelength increasing from 220 to 280 nm, the intensity
of the PL peak at 368 nm decreases. When the excitation
wavelength reaches 300 nm, there is the detection of a
peak at about 410 nm over the C450N sample as shown
in Figure 5c. The peak is a purple band. There is no
detection of such a peak at about 410 nm over the C450
and C5N1 samples. We ascribe the phenomenon to
the impurity transition level induced by doping nitrogen
of a certain concentration into the graphite lattice. It
is hence possible to modulate the luminescence peak
Figure 4 Raman spectra of C450, C5N1, C450N, and C500N.
in a controllable manner from visible light to the UV
band by doping CNT with different concentrations of
nitrogen.
Figure 6 is the FTIR spectrum of C450N. The peak at

3,455.8 cm−1 can be ascribed to the stretching vibration
of unsaturated –CH =CH–. The peaks at 1,610.3 and
1,441.9 cm−1 are ascribed to –C-H stretching vibration
while that at 879.4 cm−1 to –C-H deformation vibration.
Compared to the FTIR result of our previous study [53],
the nitrogen-doped CNM shows weaker peak intensity
and poorer transmittance plausibly due to the presence
of defects or vacancies.
We tested the oxidation resistance of C450 and

C450N. As shown in Figure 7, both samples are
sharply oxidized at about 460°C, at a temperature
lower than that for the oxidation of CNM generated
in CVD processes using iron-group metals or their
alloys as catalysts [58,59]. Furthermore, the oxidation
of C450N starts at about 460°C, and it is not so with
C450. The results suggest that there are more active
Table 3 The IG/ID intensity ratios of all samples

Sample name IG/ID

C450 1.326

C5N1 1.287

C450N 1.255

C500N 1.239



Figure 5 PL spectra of C450, C5N1, and C450. (a) C450, C5N1, and C450 with an excitation wavelength of 220 nm. (b) C450N with different
excitation wavelengths ranging from 220 to 280 nm. (c) C450, C5N1, and C450 with an excitation wavelength of 300 nm.
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defects and amorphous carbon in C450N in compari-
son with C450.

Conclusions
By controlling the acetylene decomposition temperature,
N-CNF and N-CNC can be selectively synthesized in
large scale over Na2CO3. Due to the water-soluble
Figure 6 FTIR spectrum of C450N. Inset is the FTIR spectrum of
C450, after [53].
property of NaCO3, the products can be obtained in
high purity through steps of water and ethanol washing.
The CVD process using Na2CO3 as catalyst is simple,
inexpensive, and environment-benign. We detect graph-
itic, pyridine-like as well as pyrrole-like N species in the
nitrogen-doped CNM. Compared to the non-doped
pristine CNM, the nitrogen-doped ones show enhanced
UV PL intensity.
Figure 7 TGA curve of C450 and C450N.
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