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Abstract

We demonstrate high-efficient white organic light-emitting diodes (WOLEDs) based on triplet multiple quantum
well (MQW) structure and focus on the influence on WOLEDs through employing different potential barrier
materials to form type-I and type-II MQWs, respectively. It is found that type-I MQW structure WOLEDs based on
1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene as potential barrier layer (PBL) offers high electroluminescent (EL)
performance. That is to say, maximum current efficiency and power efficiency are achieved at about 1,000 cd/m2

with 16.4 cd/A and 8.3 lm/W, which increase by 53.3% and 50.9% over traditional three-layer structure WOLEDs,
respectively, and a maximum luminance of 17,700 cd/m2 is earned simultaneously. The achievement of high EL
performance would be attributed to uniform distribution and better confinement of carriers within the emitting
layer (EML). However, when 4,7-diphenyl-1,10-phenanthroline or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline is
used as PBL to form type-II MQW structure, poor EL performance is obtained. We attribute that to improper energy
level alignment between the interface of EML/PBL, which leads to incomplete confinement and low recombination
efficiency of carriers, a more detailed mechanism was argued.

Keywords: White organic light-emitting diodes; Organic quantum well structure; Type-I and type-II;
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Background
Compared to inorganic light-emitting diodes (LEDs),
which have developed for several decades and are still
being researched [1-3], organic light-emitting diodes
(OLEDs) now have also attracted intensive attention due
to their bright future on practical application [4,5].
In recent years, white organic light-emitting diodes
(WOLEDs) have become a research highlight; because of
their potential applications in solid-state lighting, panel
display technology etc., various WOLEDs constructions
have been demonstrated [6-9]. Among the structures,
multiple quantum well (MQW) device is one of the
significant white emission devices because charge carriers
and excitons could be confined in a narrow emissive zone
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to prevent the emitter from interacting with the adjacent
emitter, which is highly similar to the working mechan-
ism of the inorganic MQW constitution of LED. MQW
is generally divided into type-I and type-II configurations
in OLEDs. Type-I MQW structure is defined as the
narrow bandgap molecule located within the wide bandgap
molecule; thus, injected carriers are confined between the
lowest unoccupied molecular orbital (LUMO) and the
highest occupied molecular orbital (HOMO) energy levels
of the narrow bandgap molecule. While the LUMO/
HOMO energy levels of both two materials in type-II
MQW structure are staggered, carriers are confined in
different molecules.
WOLEDs with the MQW structure have been reported,

thanks to the confinement of carriers and excitons within
potential wells, but their emissive efficiency is generally
lower than that of the traditional three-layer structure.
For example, Xie et al. and Yang et al. had respectively
fabricated an MQW structure white device, but both
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efficiencies of the fabricated structures were low [10,11].
The reason for the low efficiency of those MQW structure
WOLEDs are attributed to the use of fluorescent material
only and incomplete confinement of charge carriers and
excitons within the emitting layer (EML) due to adoption
of undeserved potential barrier layer (PBL) materials. In
order to improve the emissive efficiency of the MQW
structure, triplet phosphor must be used and PBL also
needs to be skillfully used. Our group had designed triplet
MQW structure WOLEDs in which 1,3,5-tris(N-phenyl-
benzimidazol-2-yl)benzene (TPBi) was used as PBL, and
blue fluorescent dye and orange phosphor doped EML
were used as two potential well layers (PWLs), respectively
[12]. As a result of the application of better PBL and triplet
emitter component PWLs, a peak luminance of 19,000
cd/m2 and a current efficiency of 14.5 cd/A were achieved.
During the process of researching the triplet MQW struc-
ture, it is found that the PBL material played a key role in
improving the performance of WOLEDs, and the distribu-
tion of carriers with different PBL materials was also differ-
ent, but it seemed that such issues have rarely been taken
into account.
In light of the mentioned argument, we continued the

investigation on triplet MQW structure in this manuscript
to further develop an active design of MQW structure
WOLEDs. Here, TPBi was used as the PBL, and 4,4′-N,
N′-dicarbazole-biphenyl (CBP) was adopted as the host,
4,4′-bis(9-ethyl-3-carbazovinylene)-1,1′-biphenyl (BCzVBi)
was used as blue fluorescent dopant, and fac-tris(2-phenyl-
pyridine) iridium(III) (Ir(ppy)3) and tris(1-phenylisoquino-
line)iridium(III) (Ir(piq)3) were used as green and red
phosphor dopants, respectively. It was found that the
WOLEDs with TPBi as the PBL formed type-I MQW
structure and showed the best electroluminescent (EL)
performance, i.e., maximum luminance, peak current effi-
ciency, and power efficiency are 17,700 cd/m2, 16.4 cd/A,
and 8.3 lm/W, which increased by 53.3% and 50.9% for
current efficiency and power efficiency compared to those
in a traditional three-layer structure, respectively. The
improved EL performance was attributed to uniform
distribution and rigorous confinement of carriers and
excitons. We also constructed WOLEDs with type-II
MQW structure, in which the PBL of TPBi in the above-
mentioned WOLEDs was changed to 4,7-diphenyl-1,
10-phenanthroline (Bphen) or 2,9-dimethyl-4,7-diphenyl-1,
10-phenanthroline (BCP), respectively, but keeping other
condition to be identical. Low EL performances were
obtained, which resulted from poor confinement of carriers
and excitons within the EML of the type-II MQW struc-
ture; a more detailed mechanism was also discussed.

Methods
Patterned indium tin oxide (ITO)-coated glass substrates
with a sheet resistance of 10Ω/sq were routinely cleaned
and treated with ultraviolet ozone for 15 min before
loading into a high vacuum chamber (approximately 3 ×
10−4 Pa). The organic materials for fabrication were pro-
cured commercially without further purification. Thermal
deposition rates for organic materials, metal oxide, and Al
were 0.2, 0.05, and 1 nm/s, respectively. Al cathode was
finally deposited with a shadow mask that defined an
active device area of 3 × 3 mm2. The WOLEDs were with
the following structure: ITO/MoO3 (5 nm)/CBP (20 nm)/
CBP: 10% BCzVBi (5 nm)/PBL (2 nm)/CBP: 5% Ir(ppy)3
(4 nm)/PBL (2 nm)/CBP: 4% Ir(piq)3 (4 nm)/PBL (2 nm)/
Bphen (45 nm)/LiF (1 nm)/Al (100 nm). Here, PBL
denotes TPBi, Bphen, and BCP for devices A, B, and C,
respectively; MoO3, CBP, and Bphen function as hole
injection layer, hole transport layer, and electron transport
layer, respectively; doped EMLs of blue, green, and red act
as PWLs simultaneously in MQW structure WOLEDs.
The device without PBL is referred to as reference
device with the traditional three-layer structure. EL spec-
tra were measured with an OPT-2000 spectrophotometer
(Photoelectric Instrument Factory of Beijing Normal
University, Beijing, China). The current–voltage-luminance
characteristics were measured with a Keithley (Cleveland,
OH, USA) 2400 power supply combined with ST-900 M
spot photometer (Photoelectric Instrument Factory of
Beijing Normal University, Beijing, China) and were
recorded simultaneously with measurements. All mea-
surements were carried out at room temperature and
under ambient conditions without any protective coatings.

Results and discussion
Figure 1 exhibits the characteristics of current density-
voltage-luminance. The reference device has a maximum
current density at the same voltage due to the absence
of PBL. Figure 2 shows the current efficiency-current
density-power efficiency characteristics of all WOLEDs,
and the inset depicts the device structures. Device A
exhibits a maximum current efficiency of 16.4 cd/A and
power efficiency of 8.3 lm/W at about 1,000 cd/m2,
which are higher than those of the reference device by
53.3% and 50.9%, respectively. It is noted that the EL
performance of the reference device with CBP as the
host of blue, green, and red emissions is almost identical
to international reported results [13-15]. That is to say,
the reference device in this paper is an optimum
performance, which could be used to contrast. Further-
more, we also see that the Commission International de
I'Eclairage (CIE) coordinates here are better than those
of the reference device due to a lower x value (see
Table 1). Thus, we consider that the type-I MQW struc-
ture is in favor of achieving a higher EL performance
than the traditional three-layer structure. This can be
understood as follows: for device A with type-I MQW
structure, injected electrons and holes located at



Figure 1 Current density-voltage-luminance characteristics of all WOLEDs.
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potential wells as EMLs and the barriers at the interface of
EML/TPBi are 0.2 eV either at the LUMO or HOMO
energy level, which can be seen in Figure 3a. Under exter-
nal electrical field, electrons and holes are injected from
the cathode and anode, respectively, then the carriers
would overcome the 0.2-eV barriers to enter into EML,
and the uniform distribution and balanced recombination
of carriers in all EMLs could take place. Another improved
factor is the confinement of triplet excitons within EMLs
because the triplet energy of TPBi is 2.74 eV [16], which is
higher than that of CBP, Ir(ppy)3, and Ir(piq)3 which are
2.56 [17], 2.41, and 2.0 eV, respectively. Therefore, PBL of
TPBi also has the function of exciton blocking, which can
Figure 2 Current efficiency-current density-power efficiency characte
confine excitons efficiently within each EML and prevent
them from migrating to adjacent EML. In contrast,
because of the absence of PBL and the host is entirely CBP
in the reference device, electrons and holes can be trans-
ported without any barriers. Singlet excitons produced in
blue EML would partly be transferred to green EML to
result in a week emission of blue light. Also, the triplet
excitons in green EML could also be transferred into red
EML so that strong red emission is observed, as shown in
Figure 4a. Such exciton transfers above must lead to the
poor EL performance of the reference device.
Another two MQW structure WOLEDs have low

efficiencies compared to device A, even lower than that
ristics of all WOLEDs. Inset: the device structures.



Table 1 Summary of EL performance of all WOLEDs in this study

Von
a (V) CEmax

b (cd/A) PEmax
c (lm/W) CEd at 1,000 cd/m2 (cd/A) PEe at 1,000 cd/m2 (lm/W) CIE at 10 V (x, y)

Reference device 3.52 10.7 5.5 10.6 5.2 (0.38, 0.45)

Device A 3.56 16.4 8.3 16.2 8.1 (0.32, 0.45)

Device B 3.76 11.0 4.4 10.9 4.2 (0.32, 0.45)

Device C 3.82 8.1 3.5 8.0 3.1 (0.24, 0.35)
aTurn-on voltage; bmaximum current efficiency; cmaximum power efficiency; dcurrent efficiency at 1,000 cd/m2; epower efficiency at 1,000 cd/m2.
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of the reference device. Devices A, B, and C offer a peak
luminance of 17 700, 13,200, and 8,489 cd/m2, respect-
ively. The difference between luminances indicates the
different recombination efficiencies because luminance is
generally decided by the recombination degree between
electrons and holes [21]. Table 1 summarizes the EL
performances of all devices. Such a large difference
between their EL performances could be understood from
different alignments between LUMO/HOMO energy
levels of EML/PBL due to the use of different PBL mate-
rials. First, let us see the schematic energy level diagrams
of WOLEDs with the portion of EMLs that are shown in
Figure 3. Device A with TPBi as PBL belongs to the
foregoing type-I MQW structure, and LUMO/HOMO en-
ergy levels (bandgap) of each EML located within LUMO/
HOMO energy levels of TPBi and two carriers are
confined in the EML, while devices B and C belong to the
type-II MQW structure with Bphen and BCP as PBL,
respectively. The LUMO/HOMO energy levels of PBL
and EML are staggered, and only a single carrier is con-
fined in the EML. For device A, there is a 0.2-eV barrier
at the interface of either [LUMO]EML/[LUMO]TPBi or
[HOMO]EML/[HOMO]TPBi, and such an energy level align-
ment makes electrons and holes distribute uniformly in the
EMLs that act as potential wells under electrical excitation.
All the electrons and holes could be confined in EMLs due
to the presence of a suitable energy level of TPBi, which
would increase a recombination possibility between the
two carriers and produce more excitons in EML [22]. For
device B, the potential well of holes is the EML with a
0.4-eV barrier at the [HOMO]EML/[HOMO]Bphen interface;
Figure 3 The schematic energy level diagram of WOLEDs with the po
white circle express electron and hole, respectively. The numbers indicate t
and HOMO are cited from [18-20].
injected holes could easily be confined within the HOMO
energy level of EML. However, there is only a 0.1-eV bar-
rier that lies in the [LUMO]EML/[LUMO]Bphen interface, so
electrons seem to cross the barrier easily and distribute all
throughout the LUMO energy level of EML and Bphen, so
less electrons could be present in the LUMO energy level
of EML, as shown in Figure 3b, which leads to a low
recombination efficiency. For device C, the situation is
similar to device B, as indicated in Figure 3c. However,
there is a 0.3-eV barrier at the [LUMO]EML/[LUMO]BCP
interface, and electrons are confined in the LUMO energy
level of BCP. Meanwhile, the larger barrier of 0.7 eV at the
interface of [HOMO]EML/[HOMO]BCP results in holes
confined in the HOMO energy level of EML. Since elec-
trons and holes are confined in different organic layers,
which increase the probability of excitons disassociation
and decrease the recombination efficiency of carriers [23],
device C presents inferior EL performances.
Therefore, the different level alignments both for

[LUMO]EML/[LUMO]PBL and [HOMO]EML/[HOMO]PBL
for devices A, B, and C lead to the different distributions
and recombination efficiencies of carriers. That is also
proven by their different EL spectra as shown in Figure 4.
From the emission spectra, we note that device A with
type-I MQW structure offers a larger blue emission than
the reference device which makes better CIE coordinates
(see Table 1). For devices B and C with type-II MQW
structure, there is a low possibility of carrier recombin-
ation due to the fact that only a single carrier could be
confined in the EML, while another carrier is confine in
PBL, which results in poor EL performances. It is a fact
rtion of EMLs. (a) device A. (b) device B. (c) device C. Black circle and
he LUMO and HOMO energies relative to vacuum (in eV). Here, LUMO



Figure 4 The EL spectra of all WOLEDs under various voltages. (a) Reference device, (b) device A, (c) device B, and (d) device C.

Zhao et al. Nanoscale Research Letters 2013, 8:529 Page 5 of 6
http://www.nanoscalereslett.com/content/8/1/529
that strong blue emission and week red emission
present in device C resulted from the accumulation of
holes at the interface of [HOMO]blue-EML/[HOMO]BCP
and that there are less holes in potential wells of green
EML and red EML, especially in potential wells of red
EML.

Conclusions
In conclusion, WOLEDs with type-I MQW structure
offer higher EL performances in contrast with the refer-
ence device with traditional three-layer structure.
WOLEDs with TPBi as PBL exhibits a peak current
efficiency and a power efficiency of 16.4 cd/A and
8.3 lm/W at about 1,000 cd/m2, which increase by
53.3% and 50.9% over the reference device, respectively;
meanwhile, a maximum luminance of 17,700 cd/m2 is
achieved, which keeps a similar luminance with the
reference device. The achievement of high EL perform-
ance with type-I MQW structure WOLEDs would be
attributed to the uniform distribution and rigorous
confinement of carriers and excitons within EMLs.
However, when Bphen or BCP acts as PBL instead of
TPBi, low EL performances (especially for BCP) are
obtained, which are attributed to poor level alignment at
the interface of EML/PBL for type-II MQW structure;
thus, incomplete confinement and low recombination
efficiency of carriers occur. In terms of the results, we
find that type-I MQW is a promising structure design for
improving white EL performance by choosing the
suitable PBL. It is also expected that feasible energy level
alignment between EML and PBL, suitable depth of
potential well, and high triplet energy of PBL would be
beneficial to demonstrate high-performance WOLEDs
with MQW structure.
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