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Abstract

Porous metals are of interest for their high surface area and potential for enhanced catalytic behavior.
Electrodeposited NiCu thin films with a range of compositions were electrochemically dealloyed to selectively remove
the Cu component. The film structure, composition, and reactivity of these samples were characterized both before
and after the dealloying step using scanning electron microscopy, energy-dispersive spectroscopy, and
electrochemical measurements. The catalytic behavior of the dealloyed porous Ni samples towards the hydrogen
evolution reaction was measured and compared to that of the as-deposited samples. The dealloyed samples were
generally more reactive than their as-deposited counterparts at low overpotentials, making the dealloying procedure
a promising area of exploration for improved hydrogen evolution catalysts.
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Background

Nanoporous metal structures are of significant interest for
a wide variety of applications due to their low density, high
surface area, enhanced optical properties, and improved
catalytic behavior [1]. Electrochemical dealloying of a
metallic alloy has been used to produce a number of differ-
ent nanoporous metals, including nickel [2-4], gold [5-12],
copper [8,13,14], silver [8,15], iron [16], platinum [17], and
palladium [18].

In most cases, during dealloying, the less noble (more
thermodynamically active) component is selectively
oxidized from the alloy, while the remaining material
may rearrange to form an interconnected network of
pores [19,20]. However, Searson and coworkers recently
showed that the more noble component of an alloy
can be selectively removed if more thermodynamically
active component is kinetically stabilized. In particular,
the nickel component of a NiCu alloy was passivated
in the electrolyte chosen for the dealloying procedure,
allowing copper to be electrochemically removed [21].
This demonstration, which has also been shown in other
electrolytes [22,23], opens up a wider range of alloy
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combinations that can be electrochemically dealloyed to
produce nanoporous materials.

Searson and coworkers used the results of NiCu deal-
loying to identify an interesting core/shell structure in the
originally deposited alloy [24]. This structure was sub-
sequently confirmed by spatially resolved composition
measurements [25], and the kinetics of the deposition
process that facilitates its formation was studied [26].
By combining this core/shell structure with deposition
into nanoporous templates and selective dealloying, the
fabrication of nickel nanotubes is possible [24,25,27].

The magnetic behavior of these dealloyed NiCu sam-
ples have been characterized [21,24,28]. Modifications
have also been made to the nanoporous structure for spe-
cific intended applications. For example, they have been
used as templates for the deposition of oxide materials
to fabricate pseudocapacitors with high specific capac-
itance [29-34], for the deposition of silicon to fabricate
high-capacity current collectors for battery applica-
tions [35], and for the deposition of silver for surface-
enhanced Raman spectroscopy applications [36]. Small
amounts of metallic palladium have been deposited on
nanoporous nickel substrates, and the resulting catalytic
activity towards methanol and ethanol oxidation was
characterized [37].

Here we characterize the catalytic activity of dealloyed
NiCu samples towards the hydrogen evolution reaction
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(HER). Efficient and cost-effective production of hydro-
gen is an important area of research for renewable and
environmentally friendly energy technology. Nickel and
nickel alloys show the potential to be lower-cost options
for electrocatalysis of hydrogen production compared to
other precious metals such as platinum [38-43]. Porous
Ni films showing enhanced activity towards the HER have
been produced by leaching of Zn and Al from NiZn
[2,44-47] and NiAl [48-52] alloys respectively. However,
the HER reactivity of porous Ni films produced from
selective removal of Cu from NiCu has not yet been explored.

In this work, NiCu thin films with varying compositions
were electrodeposited, and the copper was selectively
removed via electrochemical dealloying. The structure,
composition, and reactivity of the samples were charac-
terized both before and after the dealloying step using
scanning electron microscopy (SEM), energy-dispersive
spectroscopy (EDS), and electrochemical measurements.

Methods

Deposition and dealloying

The gold wafers on which the NiCu was deposited were
cleaved from a silicon wafer plated with 1,000 A of gold
over a 50 A titanium adhesion layer (Platypus Tech-
nologies, LLC, Madison, W1, USA). The electrochemical
measurements were completed using a BAS Epsilon
Electrochemical Workstation (Bioanalytical Systems, Inc.,
West Lafayette, IN, USA) and a custom-built Teflon cell
[53] with a defined working electrode area of 0.032 cm?, a
platinum wire (Alfa Aesar, Ward Hill, MA, USA) counter
electrode, and an Ag/AgCl (3 M NaCl) reference electrode
(Bioanalytical Systems, Inc., West Lafayette, IN, USA). All
potentials are reported with respect to the Ag/AgCl refer-
ence electrode. The electrolyte solutions were made using
water that had been purified through successive reverse
osmosis, deionization, and UV purification stages. All
chemicals were purchased from Sigma-Aldrich (St. Louis,
MO, USA) and used as received. All experiments were
carried out at room temperature.

The films were deposited from 0.5 M H3BO3 and 1 M
NapSOy solutions with varying NiSO4 and CuSOy4 con-
centrations (the sum of which was held constant at
0.11 M). The potential of the working electrode was
stepped from open circuit to —1,200 mV until a total
50 mC of charge had been deposited. The dealloying step
was performed in a 1 M NaySO, solution using linear
sweep voltammetry (LSV). The potential was swept from
OmV to between 2,100 and 2,400mV at a scan rate of 5mV/s.

Characterization

Characterization of the composition, structure, and reac-
tivity of all the samples was performed before and
after the dealloying step. Electrochemical capacitance
measurements were carried out in a 1 M Nay SOy solution
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using cyclic voltammetry (CV). The potential was cycled
from —250 to 0 mV back to —250 mV at scan rates from
25 to 400 mV/s. The average current for the forward and
reverse scans was graphed vs. the scan rate to extract the
observed capacitance, a measure of the effective area of
the sample.

Measurement of the HER was performed in 1 M NaOH.
The sample was first pretreated by the application of a
constant current of 50 wA for 5 min. Then, the HER
measurement was completed by sweeping the potential
from —1,400 to —1,200 mV at a scan rate of 5 mV/s.
The potential vs. Ag/AgCl was converted to overpoten-
tial based on the standard electrode potential of the HER
and the pH of the electrolyte [54], and the current density
was calculated with respect to the geometric area of the
sample [53]. The current vs. overpotential data were fit to
the Tafel equation to obtain the Tafel slope and exchange
current density for the measured HER [55].

SEM and EDS measurements were carried out using
a TM3000 Tabletop SEM (Hitachi, Tokyo, Japan) with
a Quantax 70 EDS attachment (Bruker, Madison, WI,
USA). Images were taken over a variety of field view
sizes from x60 to x30,000 magnification. Composition
measurements were extracted from EDS spectra taken at
%250 magnification, and Quantax 70 software was used
to extract Ni and Cu compositions from the spectra.

Results and discussion

Deposition and dealloying results

To characterize the results of both the deposition and
dealloying steps, the composition of the as-deposited and
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Figure 1 Copper composition in electrodeposited NiCu thin
films. Copper composition in the electrodeposited films as
determined by EDS as a function of the copper composition in the
deposition solution. Each point represents a single sample, and the
error bars are the typical EDS uncertainty. The dashed line indicates
equal composition in the solution and in the film.




Koboski et al. Nanoscale Research Letters 2013, 8:528
http://www.nanoscalereslett.com/content/8/1/528

N
a
|

3
|
\

'y
()]
|

10 |— >
B 7
5= / -

Cu in Film Post-Dealloy (at. %)

7
olen 10 111y
0 5 10 15 20 25
Cu in Film Pre-Dealloy (at. %)

Figure 2 Copper composition in dealloyed NiCu thin films.
Copper composition in the dealloyed films as a function of the
composition in the as-deposited film. Each point represents a single
sample, and the error bars are the typical EDS uncertainty. The dashed
line indicates removal of both components at equal rates.
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dealloyed films was measured using EDS. Figure 1 shows
the Cu concentration (in atomic %) of the deposited NiCu
films as a function of the corresponding Cu concentra-
tion in the deposition solution. Each point in the graph
represents a single sample, and the error bars are the typ-
ical uncertainty for the EDS measurements. The dashed
line indicates the case that the film composition is equal
to the solution composition. At the deposition potential
of —1,200 mV, the deposition rates for both Ni and Cu
are essentially diffusion-controlled, so the composition of
the films track the composition of the solutions to a large
extent. However, there is some variation in the results
from sample to sample, reflecting a degree of variability in
the experimental setup.

The effect of the dealloying procedure on the Cu content
of the samples is shown in Figure 2, where the Cu com-
position after dealloying is compared to the composition
in the as-deposited films. Again, each point represents
a single sample, and the error bars indicate the typical
uncertainty for the EDS measurements. The dashed line
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Figure 3 SEM images of NiCu films before (a, ¢, e) and after (b, d, f) the dealloying procedure. The initial copper content in the films are (a)
9.0 £0.5%, (c) 12.6 & 0.6%, and (e) 21.4 £ 1.1%. The copper content in the dealloyed films are (b) 9.5 £ 0.5%, (d) 11.4 £ 0.6%, and () 13.9 & 0.7%. The
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indicates no net change in the Cu composition, that is,
removal of both species at identical rates. Over the range
of Cu concentrations studied, one of two outcomes was
achieved. Either both species were removed at the same
rate, so that statistically the post-dealloy Cu composition
did not change, or Cu was selectively removed, leading to
a decrease in the Cu composition. For higher initial Cu
concentrations, copper was selectively removed. However,
for the LSV dealloying procedure used, there is evidence
of a lower limit to the Cu removal, resulting in samples
with about 12% Cu.

The structure of the as-deposited and dealloyed NiCu
samples was characterized using SEM. Example SEM
images of the NiCu films are shown in Figure 3 both
before (a, c, €) and after (b, d, f) the dealloying proce-
dure. As the initial copper content in the film increases
(from a to c to e), the grain size and roughness of the as-
deposited film increases slightly. For the case of 9% Cu
in the as-deposited film (a), the dealloying procedure left
the Cu concentration essentially unchanged, and struc-
ture of the film is also largely the same (b). For the films
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Figure 4 Higher resolution SEM images of the dealloyed NiCu
films in (a) Figure 3d and (b) Figure 3f. The scale bar is 1 pum for

both images.
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with 13% and 21% Cu (c and e), the dealloying procedure
decreased the copper content in the film and resulted in
surface pits where copper was removed (d and f). The pits
formed in the sample with the smaller initial Cu concen-
tration (d) are smaller than those formed in the sample
with the larger initial Cu concentration (f). This can be
seen more clearly in the higher resolution SEM images of
the post-dealloyed films in Figure 4.

To compare the resulting electrochemically accessible
surface areas of the samples, the electrochemical double-
layer capacitance was measured for each sample both
before and after the dealloying step. In the simplest model,
this capacitance is proportional to the surface area of the
sample accessible via electrochemistry and thus provides
a semi-quantitative measure of that area. Figure 5 shows
the ratio of the measured capacitance after the dealloy-
ing step to before the dealloying step as a function of the
amount of copper selectively removed. In the figure, nega-
tive Cu removed indicates that Ni was selectively removed
in the dealloying step; for these samples, when the uncer-
tainties are taken into account, the Cu removed amounts
are statistically equivalent to zero. The dashed line indi-
cates identical measured capacitances before and after
dealloying.

For all the samples studied, the capacitance either stayed
statistically the same or increased, suggesting that the
dealloying procedure either did not change the effective
surface area of the sample or caused it to increase. For the
samples with between 3% and 15% Cu removed, the capac-
itance ratio decreases as the amount of copper removed
increases. This observation is consistent with the SEM
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Figure 5 Ratio of measured capacitance after to before the
dealloying step. The capacitance ratio as a function of the copper
composition (at.%) removed in the dealloying step. Negative Cu
removed indicates that Ni was selectively removed in the dealloying
step rather than Cu. The dashed line indicates identical measured

capacitances before and after dealloying.
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images in Figures 3 and 4. The samples with larger initial
copper content tended to have rougher initial topogra-
phy, such as that in Figure 3e, and thus had higher initial
capacitance measurements. In addition, those samples
tended to have larger pits seen in the post-dealloy topog-
raphy, such as in Figure 3f, which increased the measured
capacitance only modestly. For the samples with smaller
amounts of copper removed, there is more variation in the
resulting capacitance ratio. The largest increases in capac-
itance occurred for samples with a moderate initial copper
content combined with a small amount of copper removal,
resulting in numerous small pits in the post-dealloy topog-
raphy. The largest capacitance ratio observed for these
samples implies a factor of 3 increase in surface area after
dealloying.

Hydrogen evolution reaction measurements

To characterize the catalytic behavior of the samples,
HER measurements were made both before and after
dealloying. Example Tafel plots of the data are shown in
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Figure 6 HER measurements of two samples both before and
after the dealloying process. Current densities were calculated with
respect to the geometric area of the sample. The initial copper
contentin the films are (a) 12.6+0.6% and (b) 21.441.1%. The copper
content in the dealloyed films are (a) 11.4 £ 0.6% and (b) 13.9 & 0.7%.
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Figure 6. In general for these samples, the HER current
density is larger after dealloying for low overpotentials,
but smaller after dealloying for larger overpotentials. That
is, the dealloyed samples are more reactive at lower over-
potentials but less reactive at higher overpotentials for
HER measurements. In addition, the data show a range
of Tafel slopes for the overpotential range measured. This
effect is more significant for the as-deposited samples.
For each set of measurements, the high overpotential
data (between —350 and —200 mV) were fit to the Tafel
equation, /] = Joe 3", where J is the current density and
n is the overpotential. The Tafel slope, b = 1“(%, and
exchange current density, Jo, were determined from the
fit parameters. The results are shown in Figure 7 as a
function of the Cu composition initially in the sample.
Consistent with the data in Figure 6, the samples tend to
have both higher Tafel slope and higher exchange current
density after dealloying compared to their as-deposited
counterparts. This combination causes the crossing of the
HER curves in Figure 6, where the dealloyed samples are
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Figure 7 Tafel slope and current density extracted from HER
measurements. (a) Tafel slope and (b) exchange current density
from HER measurements of the as-deposited and dealloyed NiCu thin
films as a function of Cu content in the film before dealloying.
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more reactive at lower overpotentials and less reactive at
higher overpotentials.

For the as-deposited samples, the Tafel slopes tend to be
around 100 to 125 mV/dec. In contrast, the Tafel slopes
for the dealloyed samples are generally higher, most above
175 mV/dec. One possible reason for these larger Tafel
slopes is a decrease in effective area available for reac-
tion at higher overpotentials due to larger gas evolution
rates. This effect may be increased by the more porous
nature of the dealloyed samples, allowing gas bubbles
to be trapped more easily. To confirm this hypothesis,
additional measurements of the effective surface areas at
different applied potentials during HER conditions are
needed.

The exchange current densities for the as-deposited
samples were generally lower than those for the deal-
loyed samples. The increase in exchange current density
for the samples after dealloying is more pronounced (over
an order of magnitude) for the samples with larger ini-
tial Cu content. This increase cannot be explained purely
by an increase in effective surface area. The measured
capacitances generally increased by a factor of 2 to 3 after
dealloying (Figure 5), so the additional increase in reactiv-
ity must be due to structural and compositional changes
in the thin films.

Conclusions

Electrodeposition and electrochemical dealloying of NiCu
thin films were used to fabricate porous samples. The
hydrogen evolution reactivity of electrodeposited NiCu
samples was measured before and after some of the Cu
was selectively removed. The dealloyed samples are gener-
ally more reactive at lower overpotentials, but less reactive
at higher overpotentials. The increase in reactivity for
the dealloyed samples, as measured by the exchange cur-
rent density, cannot be explained only by an increase
in effective surface area. Thus, some of the reactivity
increase must be due to the changes in composition
and structure of the samples from the dealloying proce-
dure. The decrease in reactivity at higher overpotentials
is hypothesized to be the result of trapped hydrogen bub-
bles decreasing the effective surface area of the samples.
Further experiments are ongoing in our laboratory to
investigate the effective surface area of as-deposited and
dealloyed samples as a function of potential. The dealloy-
ing procedure used here is a promising method for the
fabrication of effective catalysts for HER, particularly for
use at low overpotentials.
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