
Pita et al. Nanoscale Research Letters 2013, 8:517
http://www.nanoscalereslett.com/content/8/1/517
NANO EXPRESS Open Access
Annealing temperature and environment effects
on ZnO nanocrystals embedded in SiO2: a
photoluminescence and TEM study
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Abstract

We report on efficient ZnO nanocrystal (ZnO-NC) emission in the near-UV region. We show that luminescence from
ZnO nanocrystals embedded in a SiO2 matrix can vary significantly as a function of the annealing temperature from
450°C to 700°C. We manage to correlate the emission of the ZnO nanocrystals embedded in SiO2 thin films with
transmission electron microscopy images in order to optimize the fabrication process. Emission can be explained
using two main contributions, near-band-edge emission (UV range) and defect-related emissions (visible). Both
contributions over 500°C are found to be size dependent in intensity due to a decrease of the absorption cross
section. For the smallest-size nanocrystals, UV emission can only be accounted for using a blueshifted UV
contribution as compared to the ZnO band gap. In order to further optimize the emission properties, we have
studied different annealing atmospheres under oxygen and under argon gas. We conclude that a softer annealing
temperature at 450°C but with longer annealing time under oxygen is the most preferable scenario in order to
improve near-UV emission of the ZnO nanocrystals embedded in an SiO2 matrix.
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Background
Recently, ZnO nanocrystals (ZnO-NCs) have attracted a
lot of interests because of their promising applications in
optoelectronic devices, such as light-emitting devices or
UV photodetectors [1,2]. The near-UV emission of ZnO-
NC can also be utilized for efficient energy transfer to rare
earth ions (e.g., Eu3+ and Er3+ ions) to obtain emission in
the visible (for lighting) or in the near-infrared (for tele-
communications) regions [3,4]. In order to facilitate the
energy transfer, the emission band from the excited ZnO
must overlap with the absorption band of the rare earth
ions. In our earlier work [3], for example, the ZnO films
were doped with Cd ions to maximize the overlap between
the emission of Cd-doped ZnO and the absorption of
Eu3+ ions. We propose here the development and study of
ZnO-NC embedded in a SiO2 matrix to have a broadband
near-UV emission from ZnO to facilitate and optimize the
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energy transfer to rare earth ions without introducing
doping ions such as Cd ions [3]. It is desirable to embed
ZnO-NCs in a dielectric matrix, such as SiO2, to provide
both chemical and physical protection for the ZnO-NCs
[5] and also to incorporate rare earth ions.
Many existing studies have already intensively reported

on the various fabrication techniques and optical proper-
ties of ZnO-NCs embedded in SiO2 [5-15]. Nonetheless, a
complete investigation on the growth of ZnO-NCs as a
function of annealing temperature under different anneal-
ing environments is essential to understand the influence
of various annealing conditions on the optical properties
of ZnO-NC:SiO2 systems. Through this understanding,
the emission of ZnO-NCs can be engineered to provide
optimum energy transfer to rare earth ions as mentioned
above. We report in this article the study on optical and
structural properties of ZnO nanocrystals embedded in
SiO2 matrix using the low-cost sol–gel technique. We
show that annealing temperature and annealing atmos-
phere are crucial parameters that can be optimized in
order to maximize the near-UV emission from the ZnO-
NCs. Transmission electron microscopy (TEM) images as
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well as photoluminescence (PL) spectra are studied in
order to find the right conditions for obtaining a max-
imized emission. A blueshifted emission at 360 nm
was necessary to account for the emission of the
smallest-size NCs. Such a result is in agreement with
earlier-reported blueshifted transmission spectra ob-
served for ZnO-NCs but diluted in solution, not in
thin films [16].
Methods
We have developed a low-cost fabrication process to
prepare our composite thin film samples using the sol–
gel technique. The process consists of three steps, as
shown schematically in Figure 1. The first step is mixing
the precursors, solvent, and catalysts. Tetraethyl ortho-
silicate (TEOS) and zinc acetate were used for SiO2 and
ZnO precursors, respectively. TEOS was mixed with
ethanol, and then a controlled amount of deionized (DI)
water and acid was added. Zinc acetate was mixed in
ethanol and diethanolamine (DEA). The ratio of ZnO to
SiO2 (ZnO/SiO2 = 1:2 in this article) is determined by
controlling the amount of the precursors in the sols.
The sols are aged at an appropriate time, typically 24 h,
to form Si-O-Si and Zn-O networks. The two sols are
mixed together before the second step. The second step
is to spin-coat the sol on (100) Si wafer substrates. This
step is followed by soft baking for 5 min at 100°C
and then rapid thermal processing (RTP) annealing for
1 min in an O2 environment at various annealing tem-
peratures ranging from 450°C to 700°C. To investigate
the emission from ZnO nanocrystals, the samples were
post-annealed for 30 min in O2 and Ar environments at
various temperatures.
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Figure 1 The fabrication of ZnO nanocrystals embedded in SiO2matri
Results and discussion
TEM of ZnO nanocrystals embedded in SiO2 matrix
As mentioned in the ‘Introduction,’ in order to study the
formation and evolution of ZnO-NCs in a SiO2 matrix at
various annealing temperatures and environments, we
have employed the TEM technique and analysis. Figure 2a,
b,c,d,e shows the TEM pictures of the samples annealed in
RTP for 1 min in O2 atmosphere at 450°C to 700°C. The
ZnO nanocrystals in the SiO2 matrix can be identified by
the presence of crystal planes which are indicated by white
circles. The dark contrast indicates the presence of ZnO
clusters. From the TEM pictures in Figure 2a,b,c,d,e, we
obtained the average sizes of the ZnO-NCs and their
standard deviations for various RTP annealing tempera-
tures, presented in Table 1. We can verify that the atomic
spacing found by the TEM images is indeed that of the
ZnO crystals. We see that the average sizes and the stand-
ard deviations decrease with increasing temperature. The
decrease of the average sizes of ZnO-NCs with increasing
annealing temperature is presumably because of the for-
mation of Zn2SiO4 at the ZnO and SiO2 interfaces [6].
The reduction of the corresponding standard deviation in-
dicates that the average sizes become more uniform with
increasing temperature.

Photoluminescence of ZnO-NCs in SiO2 at various annealing
temperatures
The emission from the ZnO-NCs in the SiO2 matrix at
various RTP annealing temperatures was investigated
using PL with a 325-nm He-Cd continuous excitation
laser. Emission was sent to a 50-cm focal length spectrom-
eter coupled to a Peltier-cooled CCD camera at −85°C.
The PL spectra are shown in Figure 3a for various RTP
annealing temperatures. As shown in Figure 3b for the
ng annealing 30 minutes
 O2 or Argon environment

+ Catalyst
+ acid)

Dopants
(Zinc acetate + ethanol + DEA)

 (hydrolysis + condensation)

Mixing

Spin-coating

Baking

RTP annealing 
inute in O2 environment

x by the low-cost sol–gel technique.



Figure 2 TEM pictures of samples annealed in RTP for 1 min in O2 atmosphere. (a) 450°C, (b) 500°C, (c) 550°C, (d) 600°C, and (e) 700°C.
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most representative spectrum, the measured PL can be
perfectly accounted for using two main contributions, one
in the UV-blue range and the other one in the visible
range. The UV-blue emission is composed of three Gauss-
ian peaks centered at 360, 378, and 396 nm. The visible
emission is composed of four Gaussian peaks centered at
417, 450, 500, and 575 nm. The photoluminescence from
our SiO2 matrix alone was measured beforehand and was
found to be negligible as no emission could be detected
under our experimental conditions. To further confirm
Table 1 Average sizes and corresponding standard
deviations of the ZnO-NCs for various annealing
temperatures

Temperature (°C) Average size (nm) Standard deviation (nm)

450 4.83 1.51

500 4.22 1.60

550 4.14 1.12

600 3.91 0.85

700 3.13 0.48
the consistency of the emissions, the same analysis has
been performed for all spectra, keeping the fitting parame-
ters the same except for the peak amplitude, i.e., fixed cen-
ter wavelengths and full width at half maxima were used
for all spectra. Figure 3c shows the evolution of the area of
each Gaussian peak as a function of the RTP temperature,
along with the evolution of the ZnO-NC average volume.
The average ZnO-NC volume is determined using the
average size of the ZnO-NC given in Table 1 and by
assuming that the ZnO-NCs have a spherical shape. At
450°C annealing temperature, the PL spectrum (Figure 3a)
is very broad and is centered at about 500 nm. As seen in
Figure 3c, the PL spectrum is mainly constituted by the
Gaussian peaks around 500 and 575 nm. The visible ZnO
emission is due to defects in the sample which can be
attributed to the great number of ZnO clusters and the
relatively poor ZnO-NC crystallinity, especially at the ZnO-
NC/SiO2 interface, as seen in the TEM image (Figure 2a).
The ZnO defects are mainly oxygen-related defects. The
emission at 417 nm can be assigned to oxygen interstitials
[17], while the other visible emissions at 450, 500, and



Figure 3 The PL spectra of the samples at various temperatures.
(a) Photoluminescence spectra of the ZnO-NCs in the SiO2matrix at
various RTP annealing temperatures. (b) The spectrum can be
accounted for by two main contributions in the UV-blue and visible
regions, respectively. (c) The evolution of various peaks as a function
of annealing temperature is shown. For comparison, the volume
evolution calculated from the NC size obtained from the TEM
analysis is also shown. The decrease of the signal at high annealing
temperature can be roughly accounted for by the decrease of the
NC absorption cross section.
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575 nm can be related to oxygen vacancies [5,13,18]. These
defects are consistent with our long annealing data, which
will be discussed in the next section.
On the other hand, the few ZnO-NCs that exist in the

sample give rise to some UV emission, which results in
the broad PL spectrum. At 500°C annealing temperature,
the PL spectrum exhibits an overall blueshift which is
due to the increase of the UV-blue emission in the
sample. As shown in Figure 3c, the RTP annealing at
500°C is accompanied by an increase of the blue and UV
emission between 360 and 450 nm and a decrease of de-
fect emissions at higher wavelengths. The drastic change
in the emission spectrum of the sample can be attrib-
uted to an increase in the ZnO-NCs and the decrease of
ZnO clusters in the sample (Figure 2b), which should in
turn increase the ZnO near-band-edge emission in the
UV region. The emission peak at 378 nm can be related
to ZnO near-band-edge (excitonic) emission [19,20].
The emission peak at 396 nm could possibly be related
to the electron transition from Zn interstitial to Zn va-
cancy as reported by Panigrahi et al. [5]. While being
relatively weak, it is worth noting the appearance of a
peak at 360 nm for the smallest NCs for which quantum
confinement is expected to occur as already reported in
a transmission experiment in solution [16]. Further ana-
lysis and especially low-temperature PL measurement
are needed to confirm the peak origin. For annealing
temperatures higher than 550°C, no drastic change is
observed in the shape of the emission spectra, as seen in
Figure 3a. Instead, the PL spectra mainly exhibit a de-
crease in the emission intensity. Indeed the Gaussian fit-
ting analysis shows that the peak amplitudes decreased
by the same proportion compared to its value at 500°C.
However, the analysis shows that the decrease of the de-
fect emission is slightly stronger than that of the UV
emission contribution. The overall decrease of the emis-
sion intensity is consistent with the reduction of the
ZnO-NC average volume (i.e., size) with increasing an-
nealing temperature, as shown in Figure 3c. The de-
crease of the ZnO-NC average volume normally results
in a decrease of the ZnO-NC absorption cross section,
leading to a weaker ZnO-NC luminescence.

Photoluminescence of ZnO-NCs in SiO2 after the second
annealing step in O2 or Ar atmosphere
The RTP-annealed samples at 450°C, 500°C, and 550°C
were post-annealed for 30 min in both O2 and Ar atmo-
spheres. The PL spectra are shown in Figure 4a,b,c. The
post-annealing process was not realized for the samples
annealed in RTP beyond 550°C as they presented a very
weak emission.
For the sample annealed in RTP at 450°C, the PL spectra

(see Figure 4a) show a remarkable change in the emission
characterized by a decrease of the defect (i.e., visible) emis-
sion and the appearance of the UV emission around 378
and 396 nm. Compared to the post-annealing in Ar, the
post-annealing in O2 results in a stronger decrease of the
defect emission around 500 and 575 nm. This behavior
strongly indicates that oxygen vacancies are at the origin
of the defect emissions in the visible region, which sup-
ports our analysis above that the defects are due to the
oxygen vacancies. For the samples annealed in RTP at



Figure 4 PL of samples going through the second annealing
step in O2 and Ar atmospheres. At (a) 450°C, (b) 500°C, and
(c) at 550°C.
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500°C, the PL spectra present a slight change in the shape
of the emission. Nonetheless, the post-annealing in Ar re-
sults in an overall decrease of the emission intensity, while
the post-annealing in O2 leads to an increase in the UV
emission and a comparatively slight decrease in the defect
emissions. The slight decrease in the defect emissions in-
dicated that the RTP annealing at 500°C for 1 min is suffi-
cient to form the ZnO-NC and significantly reduces the
oxygen deficiency. For the sample annealed in RTP at
550°C, the post-annealing in Ar and O2 hardly presents
any change in the emission spectra, except for a slight
change in the intensity of the UV emission. The post-
annealing in Ar and O2 has no effect on the sample after
the RTP annealing at 550°C.

Conclusions
To conclude, we studied ZnO nanocrystals embedded in
SiO2 matrix fabricated by the sol–gel method. We have
analyzed the effects of temperature and atmosphere on
the annealing of such thin films. We post-annealed the
samples from 450°C to 700°C under O2 or under Ar at-
mosphere. By looking at the effect of such annealing con-
ditions using TEM images and PL spectra, we identify the
best annealing temperature for maximizing the near-UV
emission of the ZnO nanocrystals. We show that an an-
nealing temperature of 450°C under longer annealing time
and under oxygen is preferable to higher annealing tem-
peratures and shorter times. By maximizing the near-UV
emission of the ZnO nanocrystals, which produce a rela-
tively wide emission band centered at ~398 nm, the spec-
tral overlapping with rare earth ions like Eu3+ (which has
an absorption band at 395 nm) can be greatly enhanced.
These results are important in the process of making effi-
cient luminescent thin films (including energy transfer to
other species such as rare earth ions) for future app-
lications in lighting and telecommunication based on
ZnO-NCs.
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