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Abstract

In this letter, a double active layer (Zr:SiOx/C:SiOx) resistive switching memory device with outstanding performance
is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS)
and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we
observed that graphene oxide exists in C:SiOx layer. Compared with single Zr:SiOx layer structure, Zr:SiOx/C:SiOx

structure has superior performance, including low operating current, improved uniformity in both set and reset
processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and
the existence of graphene oxide flakes formed by the sputter process.
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Background
Recently, the applications of mobile electronic products,
such as combined display designs [1-9], memories [10-12],
and logic ICs, have popularized considerably. With the
growing demand of powerful mobile electronic products,
non-volatile memory (NVM) has been widely applied due
to its low power consumption requirements. To surmount
the technical and physical limitation issues of conven-
tional charge storage-based memories [13-17], the re-
sistance random access memory (RRAM) is a kind of
promising NVM due to its superior characteristics such as
low cost, simple structure, high-speed operation, non-
destructive readout, and the compatibility in the semicon-
ductor industry [18-39].
Graphene and graphene oxide-based materials attract

vast attention and have been applied into various fields
[40]. Graphene oxide (GO) is a material of great interest
for its special quality, and its electrical properties can be
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modified by altering the attached chemical groups. It ex-
hibits resistance switching behaviors by adding and re-
moving oxygen-containing groups, which are quite
different from common filament dominant resistance
switching [41-44].
In our research, double resistive switching layer RRAM

with a sandwiched structure of Pt/Zr:SiOx/C:SiOx/TiN was
fabricated to investigate the switching merits by inserting
C:SiOx layer. Graphene oxide was observed in the inserted
layer from the analysis of Raman and Fourier transform in-
frared (FTIR) spectra. Meanwhile, single resistive switching
layer devices (Pt/Zr:SiOx/TiN) were also fabricated so as to
make a comparison. Through current fitting, hopping con-
duction mechanism was found in both high-resistance state
(HRS) and low-resistance state (LRS) of Zr:SiOx/C:SiOx

RRAM devices. The resistance switching properties of gra-
phene oxide was different from unstable metal filament for-
mation and rupture [45,46]. The performance of RRAM
devices has always been one of the targets which influence
its mass production and wide application in the semicon-
ductor industry. This is also the reason why the perform-
ance of Zr:SiOx/GO:SiOx stacking structure is focused and
analyzed in detail in this paper owing to its superior proper-
ties from various aspects.
n open access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:tcchang@mail.phys.nsysu.edu.tw
mailto:t1446@nknucc.nknu.edu.tw
http://creativecommons.org/licenses/by/2.0


Zhang et al. Nanoscale Research Letters 2013, 8:497 Page 2 of 6
http://www.nanoscalereslett.com/content/8/1/497
Methods
The experimental specimens were prepared as follows:
for the single active layer specimen, the Zr:SiOx thin film
(about 20 nm) was deposited on the TiN/Ti/SiO2/Si sub-
strate by co-sputtering with the pure SiO2 and Zr tar-
gets. The active layer was deposited onto patterned TiN
bottom electrode, and the sputtering power was fixed at
RF power 200 and 20 W for SiO2 and Zr targets,
respectively. The co-sputtering was executed in argon
ambient (Ar = 30 sccm) with a working pressure of 6
mTorr at room temperature. However, for the double
resistive switching layer specimen, first a C:SiOx film
(about 6 nm) was deposited by co-sputtering with the
SiO2 and C targets. The sputtering power was fixed at
RF power 200 and 5 W for SiO2 and C targets, respect-
ively. The co-sputtering was also executed in argon
ambient (Ar = 30 sccm) with a working pressure of 6
mTorr at room temperature. Then, the layer of Zr:SiOx

(about 14 nm) was deposited with the same RF power,
Figure 1 RRAM device, resistive switching characteristic, reset voltage
device schematic structure. (b) Resistive switching characteristic compariso
voltage distributions. The lower inset shows the corresponding I-V curve of
Zr:SiO2 and Zr:SiO2/C:SiO2 RRAM devices.
argon ambient, and working pressure as antecedent sin-
gle Zr:SiOx layer specimen.
Ultimately, the Pt top electrode of 200-nm thickness

was deposited on both specimens by direct current (DC)
magnetron sputtering. The entire electrical measure-
ments of devices with the Pt electrode of 250-μm diam-
eter were performed using Agilent B1500 semiconductor
parameter analyzer (Santa Clara, CA, USA). Besides, X-
ray photoelectron spectroscopy (XPS), FTIR, and Raman
spectroscopy were used to analyze the mole fraction,
chemical composition, and bonding of these insulator
materials, respectively.

Results and discussion
A forming process using DC voltage sweeping with a
compliance current of 10 μA is required to activate all of
the RRAM devices. Afterwards, the DC voltage sweeping
cycling test is performed to evaluate both types of de-
vices. Figure 1b shows that Zr:SiOx/C:SiOx RRAM
distributions, and distributions of HRS and LRS. (a) The RRAM
n of single and double switching layer RRAM. (c) Comparison of reset
reset process in linear scale. (d) Distributions of HRS and LRS of



Figure 2 Current fitting of HRS and LRS of Zr:SiO2 and Zr:SiO2/C:SiO2 RRAM devices, respectively (a, b). The activation energy of HRS and
LRS for hopping conduction is 74.7 and 47.4 meV, respectively.
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devices exhibit smaller working current on both LRS
and HRS. It is noted that the single Zr:SiOx layer device
shows less attractive characteristics during DC sweeping
cycles, including smaller ratio between HRS and LRS,
unstable set voltage, and lower degree of uniformity in
reset process. If we define the read voltage 0.1 V, the on/
off ratios of single- and double-layer devices is 20 and
30, respectively. Meanwhile, from Figure 1c,d, we can
see that both the reset voltage and stability between
HRS and LRS of Pt/Zr:SiOx/TiN RRAM show wider dis-
tributions compared with Pt/Zr:SiOx/C:SiOx/TiN struc-
ture devices.
Figure 3 Raman spectra of C SP2 and C SP3 in C:SiOx film. It confirms t
FTIR spectra, from which graphene oxide coupling OH peak can be observ
Through current fitting, we find that both LRS and
HRS of double resistive switching layer devices have
hopping conduction mechanism, owing to the introduc-
tion of carbon element [43], while single resistive switch-
ing layer devices exhibit Poole-Frenkel conduction in
HRS and Ohmic conduction in LRS (Figure 2).
After that, we utilize material spectra analyses to find out

the reason for better performance. First, XPS is applied,
from which we obtain the mole fraction of each element in
C:SiOx and Zr:SiOx films. The corresponding element ratios
in C:SiOx and Zr:SiOx are C/Si/O = 7.9:27.32:66.19 and Zr/
Si/O = 7.49:26.32:66.19, respectively. To better understand
he existence of graphene oxide. The upper inset is the corresponding
ed at the wavenumber of 3,665 cm−1.



Figure 4 Endurance characteristics of (a) Pt/Zr:SiO2/TiN structure and (b) Pt/Zr:SiO2/C:SiO2/TiN structure.
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the impact of the inserted C:SiOx layer, it is further analyzed
by Raman spectroscopy, from which we find typical gra-
phene oxide Raman spectra which is comprised of a higher
G band peak and a lower D band peak (Figure 3) [41,47]. In
order to further testify the existence of graphene oxide and
find its chemical bonding type, FTIR spectroscopy is used
to analyze C:SiOx film. Graphene oxide coupling OH peak
can be observed at the wavenumber of 3,665 cm−1, as
shown in the top right FTIR spectra of Figure 3.
The resistive switching mechanism in Zr:SiOx can be

explained by the stochastic formation and rupture of
conduction filaments. This is also the reason why we
can find Ohmic conduction mechanism in LRS and
Pool-Frenkel conduction mechanism in HRS. As in LRS,
electrons conduct through metal filaments from the top
electrode to the bottom electrode, and in HRS, electrons
conduct through shallow defects between the tip of rup-
tured filament and the bottom TiN electrode. Due to the
stochastic formation of conduction filament process, sin-
gle active layer RRAM device exhibits less stable set
voltage and lower degree of uniformity in the reset
process.
Comparatively, the C:SiOx film works as the switching

layer, in which the carrier will hop through the carbon
atoms within the carbocycle. If the bottom TiN electrode is
applied with a negative bias, oxygen atoms are repelled to
the reverse direction of TiN electrode and adsorbed by gra-
phene oxide. With the adsorption of oxygen atoms,
carbon-carbon bonds are stretched and carbocycle is en-
larged, which results in longer hopping distance of carriers.
The adsorption and desorption of oxygen-containing
groups are responsible for the resistive switching in gra-
phene oxide-doped silicon RRAM [41-44]. Compared with
random formation of conduction filament process, adsorp-
tion and desorption of oxygen-containing groups are more
stable, as the movement of oxygen-containing groups is
much more directional (to graphene oxide). Meanwhile,
conduction path always exists, and the difference is hop-
ping distance variation and oxidation rate of graphene
oxide. At the top Zr:SiO2 layer, the metal filament serves as
the conduction way and has the ability of concentrating the
electrical field, which facilitates the adsorption and desorp-
tion processes of oxygen chemical groups.
To further evaluate the memory performance, measure-

ment of endurance and retention of both kinds of devices
is performed. The retention properties of both types of de-
vices remain stable even after 104 s at 85°C, which satisfy
the NVM requirements. The endurance performance is
shown in Figure 4. During 104 pulse cycles, the HRS and
LRS of Zr:SiOx RRAM are short (Figure 4a). While in Zr:
SiOx/C:SiOx RRAM device, it exhibits stable HRS and LRS
even after more than 106 pulse cycles (Figure 4b).

Conclusion
In conclusion, by co-sputtering C and Zr with SiO2,
respectively, we fabricated a double resistive switching
layer RRAM, which has significantly outstanding per-
formance. Both FTIR and Raman spectra confirm the
existence of graphene oxide in the switching layer of
double active layer RRAM devices. Compared with the
stochastic formation of conducting filaments, the ad-
sorption and desorption of oxygen atoms from carbo-
cycle work much more stable. This is also the reason
why Zr:SiOx/C:SiOx structure has superior switching
performance and higher stability.
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