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Fabrication of low-temperature solid oxide fuel
cells with a nanothin protective layer by atomic
layer deposition
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Abstract

Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a
gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and
electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and
thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC
electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer
deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open
circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte
(approximately 0.3 V).

Keywords: Atomic layer deposition, Protective layer, Thin-film solid oxide fuel cell, Yttria-stabilized zirconia,
Gadolinium-doped ceria, Anodic aluminum oxide
Background
Solid oxide fuel cells (SOFCs) normally operate at con-
siderably high temperatures (>700°C) to facilitate ionic
charge transport and electrode kinetics [1,2]. Encoun-
tered by issues such as limited material selection and
poor cell durability, many researchers have tried to re-
duce the operating temperature [3-5]. However, lower
operating temperature led to a significant sacrifice in en-
ergy conversion efficiency due to the resulting increase
in ohmic and activation losses [1].
There are roughly two ways to minimize the ohmic

loss surging at lower operating temperatures. One is to
reduce the thickness of the electrolyte, and the other is
to synthesize materials with higher ionic conductivities.
First, the strategy to reduce in electrolyte thickness has
been carried out by many research groups [6-10]. Shim
et al. demonstrated that a fuel cell employing a 40-nm-
thick yttria-stabilized zirconia (YSZ) can generate a power
density of 270 mW/cm2 at 350°C [11], while Kerman et al.
demonstrated 1,037 mW/cm2 at 500°C from a 100-nm-
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thick YSZ-based fuel cell [12]. Another approach of min-
imizing ohmic loss is using electrolytes with higher ionic
conductivities. Gadolinium-doped ceria (GDC) has been
considered as a promising electrolyte material due to its
excellent oxygen ion conductivity at low temperatures
[13,14]. However, the tendency of GDC being easily reduced
at low oxygen partial pressures makes its usage as a fuel-
cell electrolyte less attractive because the material will
have a higher electronic conductivity as it is reduced. For
this reason, many studies have been performed to prevent
electronic conduction through GDC film by placing an
electron-blocking layer in the series [15-17]. Liu et al.
demonstrated the electron-blocking effect of a 3-μm-thick
YSZ layer in a thin-film fuel cell with a GDC/YSZ bilayered
electrolyte [18]. If the GDC electrolyte thickness was
reduced down to a few microns, another problem emerges,
i.e., oxygen gas from the cathode side starts to permeate
through the thin GDC electrolyte [13,19]. For the reasons
mentioned, the application of a protective layer is essential
for GDC-based thin-film fuel cells. Recently, Myung et al.
demonstrated that a thin-film fuel cell having a 100-nm-
thick YSZ layer deposited by pulsed laser deposition onto a
1.4-μm-thick GDC layer actually prevented both the reduc-
tion of ceria at low oxygen partial pressures and oxygen
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permeation across the GDC thin layer [20]. For the de-
velopment of large-scale thin-film fuel cells, an anodic
aluminum oxide (AAO) template has been considered as
their substrate due to its high scalability potential. How-
ever, commercially available AAO templates have a con-
siderably rough surface unlike silicon-based substrates,
which have been used for conventional thin-film fuel
cells. For this reason, atomic layer deposition (ALD)
technique was employed to deposit a highly conformal
and dense YSZ layer to minimize uncontrolled pinholes
and/or morphological irregularities.
In this report, we demonstrate a prototypical, AAO-

supported thin-film fuel cell with a bilayered electrolyte
comprising a GDC film and a thin protective YSZ layer.
The radio frequency (RF)-sputtered GDC layer with ex-
cellent oxygen ion conductivity is used as the primary
electrolyte layer, while the YSZ layer deposited by ALD
technique prevents the reduction of ceria at low oxygen
partial pressure and oxygen permeation across the GDC
thin layer. To investigate the effect of ALD YSZ layer as
a protective layer, the electrochemical performance of a
GDC/YSZ bilayered thin-film electrolyte fuel cell is
compared with that of a single-layered GDC-based thin-
film fuel cell.
Methods
Thin-film characterization
Chemical composition of thin films was analyzed by X-ray
photoelectron spectroscopy (XPS) (AXIS Hsi, Kratos Ana-
lytical, Ltd., Manchester, UK). Possible surface contamin-
ation was eliminated by 150 eV of Ar-ion etching for 30 s
prior to XPS analysis. The microstructure of thin films
was investigated using focused ion beam and field emis-
sion scanning electron microscopy (FE-SEM) (Quanta 3D
FEG, FEI Company, Hillsboro, OR, USA), and a few
Figure 1 XPS spectra of (a) Ce 3d and (b) Gd 4d core levels of GDC th
nanometer-thick Pt layer was coated on samples to pre-
vent thin films from being etched by FE-SEM imaging.

Electrochemical evaluation
A test cell was attached to a custom-made hydrogen feed-
ing chamber using a ceramic adhesive (CP4010, Aremco
Products, Inc., Briarcliff Manor, NY, USA) and heated to
450°C using a halogen heating system. Dry H2 gas with a
mass flow of 25 sccm was supplied to the anode side, and
cathode was exposed to atmospheric environment. Anode
was connected to a silver wire, and cathode was contacted
by a hardened steel probe. Polarization of thin-film fuel
cells was analyzed using an electrochemical testing system
(1287/1260, Solartron Analytical, Hampshire, UK).

Results and discussion
Thin-film electrolyte fabrication
GDC thin-film was fabricated by a commercial sputter
(A-Tech System Ltd., Incheon, South Korea). Gd-Ce
alloy (with 10 at.% Gd) was used as the GDC target.
Target-to-substrate (T-S) distance was 80 mm. GDC thin
films were deposited at a mixed Ar/O2 gas pressure of
5 mTorr. Volume fraction of O2 to Ar was 0.2. RF power
was set at 150 W. The growth rates of GDC thin films
deposited at 100°C and 500°C were approximately 42
and 20 nm/h, respectively. Considering that the packing
density of GDC thin-film increases as the substrate
temperature increases [21], the substrate was heated to
a high temperature of 500°C [1] in order to accommo-
date more volume for bulk ionic conduction. To deter-
mine the chemical composition of GDC thin films, XPS
analysis was carried out. A GDC thin-film deposited at
500°C (GDC-H) was compared to a film prepared at
room temperature (GDC-R). Figure 1a,b respectively
shows the XPS spectra of Ce 3d and Gd 4d core levels
of GDC-R and GDC-H. As shown in Figure 1a, the Ce 3d
in films.
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core level of GDC-R did not show spin orbital doublets (V0,
U0) unlike GDC-H, which is a characteristic of the Ce3+

binding state [22]. This result reveals that GDC-H contains
reduced cerium oxide (e.g., Ce2O3) as well as cerium diox-
ide. The Gd 4d core level in Figure 1b illustrated character-
istic peaks that are very similar to those of gadolinium
oxide, and there was no distinct difference between the
two samples. As for atomic concentrations, GDC-H had a
higher Gd doping concentration (Gd 4d ≈ 13%) than the
GDC target (approximately 10%). It is tentatively attributed
to the fact that cerium oxide with a lower molecular weight
becomes more volatile than gadolinium oxide as substrate
temperature increases [23].
We applied the ALD technique, thus enabling excellent

step coverage to fabricate the ultrathin conformal YSZ layer
using a commercial ALD system (Plus-100, Quros Co.,
Ltd., Osan, South Korea) [24,25]. Prior to the deposition of
a YSZ thin-film, zirconia and yttria films were separately
deposited and characterized for a systematic study. Both
films were fabricated by repeating the sequence of precur-
sor pulse (3 s), purge (20 s), oxidant pulse (1 s), and purge
(10 s). Tetrakis(dimethylamido)zirconium, Zr(NMe2)4, and
Tris(methylcyclopentadienyl)yttrium, Y(MeCp)3, were used
as precursors for zirconium and yttrium, respectively. The
precursor was delivered using an electropolished stainless
steel bubbler fed by Ar gas with 99.99% purity. O2 gas
was used as the oxidant, and stage temperature was set
to 250°C. The temperatures of canisters with charged
precursors were 40°C and 180°C, and the line tempera-
tures were 60°C and 210°C for zirconia and yttria depos-
ition, respectively. The growth rates of both zirconia and
yttria films during the initial 1,000 cycles were approxi-
mately 1 Å/cycle. Although these growth rates were some-
what lower than the reported values (1.2 to 1.5 Å/cycle)
[11], the film thickness increased proportionally with the
deposition cycles. XPS analyses were performed to deter-
mine the chemical composition of an approximately 100-
Figure 2 XPS spectra of (a) Zr 3d and (b) Y 3d core levels of zirconia/
nm-thick zirconia film and an approximately 100-nm-
thick yttria film. The atomic concentrations in the zirconia
thin-film were as follows: for Zr 3d, it was 41.6%, and for
O 1s, it was 58.4%; they were somewhat different from the
expected stoichiometry of ZrO2. It is attributed to the fact
that reduced zirconium (e.g., Zr0 3d5/2 or Zr

2+ 3d5/2) was
partially combined with O2 during the ALD process, as
indicated in the curve fitting result of Figure 2a [26]. The
atomic concentrations of the yttria thin-film were Y 3d =
40.9% and O 1s = 59.1%, which are well aligned with the
stoichiometry of Y2O3. The Y 3d5/2 peak was located at a
binding energy of 156.7 eV, as shown in Figure 2b [27].
Subsequently, YSZ thin films were fabricated by co-

deposition of zirconia and yttria. Zirconia was deposited
prior to yttria deposition. Yttria mole fraction in the
ALD YSZ thin-film was controlled by changing the ratio
of deposition cycles for zirconia and yttria. The yttria
mole fraction is widely known to determine oxygen ion
conductivity in the YSZ, and 8% mole yttria was
reported to render the maximum oxygen ion conductiv-
ity [1]. When the ratio of zirconia and yttria ALD cycle
was 7:1, the atomic concentrations of the YSZ thin-film
were as follows: Zr 3d = 24.2%, Y 3d = 3.6%, and O 1s =
72.1%, which were also determined by an XPS analysis.
The Y2O3 mole fraction, x, in the YSZ chemical formula
of (ZrO2)1−x(Y2O3)x was approximately 0.07. In the case
of the YSZ thin-film, the XPS spectra corresponding to
an under-stoichiometric ZrO2 did not appear, unlike
those in the zirconia thin-film.

Design of AAO-supported GDC/YSZ bilayered thin-film
fuel cell
A commercial AAO (Synkera Technology Inc., Longmont,
CO, USA) template with an 80-nm pore and a 100-μm
height was used as the substrate to leverage their high
density of nanopores and resulting electrochemical reaction
sites [28,29]. Pt electrode was fabricated by a commercial
yttria thin films.
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sputter (A-Tech System Ltd.). Pt with 99.9% purity was used
as the Pt target, and the T-S distance was 100 mm. The de-
position was conducted at room temperature, and the direct
current power was set to 200 W. The Pt anode was depos-
ited on the AAO template in an area of 10 × 10 mm2.
Dense Pt anodes were deposited at a 5-mTorr Ar pressure,
having the growth rate of approximately 60 nm/min.
Subsequently, YSZ and GDC electrolytes with an area of
9 × 9 mm2 were deposited on the Pt anode. The critical
thickness ratio of the YSZ layer to the GDC layer to pre-
vent the reduction of ceria, which was determined con-
sidering the distribution of oxygen activity through the
thickness of a bilayer, was reported to be approximately
10−4 at 800°C and was expected to decrease further at
lower temperatures [30]. For this reason, the required
minimum thickness of the YSZ layer for electron block-
age, if the thickness of GDC layer is 420 nm, is only ap-
proximately 0.4 Å. However, a much thicker YSZ film
(40 nm) was deposited on the anode side to compensate
the rough morphological variations of the Pt-coated
AAO surface. The GDC layer, which was 420-nm thick,
was then deposited on the YSZ layer. Oxygen reduction
reaction happening at the cathode is widely known to
cause a significantly greater activation loss compared with
the hydrogen oxidation reaction occurring at the anode
[1]. In order to facilitate cathode reaction, a porous Pt
cathode was prepared by depositing at a much higher Ar
pressure of 90 mTorr than that used for anode deposition
(5 mTorr Ar). The cathode thickness was approximately
200 nm. The growth rate still remained at approximately
60 nm/min. The Pt cathode, which effectively determines
the nominal area of active cell, was deposited using a mask
with 1 × 1 mm2 openings.

Electrochemical evaluation of thin-film fuel cells
Thin-film fuel cells with 850-nm-thick GDC and 850-nm-
thick Sn0.9In0.1P2O7 (SIPO) electrolytes were fabricated to
study further how the ALD YSZ layer have the influence
Figure 3 FE-SEM cross-sectional images of cells 1 and 2. (a) A GDC sin
thin-film fuel cell (cell 2).
on electrochemical performance [31]. Except for the elec-
trolyte, other cell components were equal to those for
GDC/YSZ bilayered thin-film fuel cell. For a comparison
with GDC-based cells (cell 1, Pt/GDC/Pt), we fabricated
SIPO-based cells (cell 2, Pt/SIPO/Pt). It is postulated that
the electrolytes deposited with the same deposition
process have identical microstructures [20]. As shown in
Figure 3a,b, both the 850-nm-thick dense GDC and SIPO
electrolytes did not show any evident pinhole. However,
the OCV of approximately 0.3 V for cell 1 was significantly
lower than that for cell 2 (approximately 1.0 V). This re-
sult indicates that the lower OCV of the GDC-based cells
may have originated from oxygen permeation through the
GDC electrolyte and/or ceria reduction, not from gas leak-
age through pinholes. In order to verify the effect of the
ALD YSZ layer, we characterized electrochemical perfor-
mances of GDC/YSZ bilayered thin-film fuel cell (cell 3,
Pt/GDC/YSZ/Pt), which has a 40-nm-thick ALD YSZ
layer at the anodic interface as shown in Figure 4. As
expected, the OCV of cell 3 with the ALD YSZ layer
stayed at a decent value of approximately 1.07 V, unlike
that of cell 1 (approximately 0.3 V). This discrepancy indi-
cated that the ALD YSZ layer played a successful role as a
functional layer to suppress the issues that originated from
thin-film GDC electrolyte such as the electronic current
leakage and the oxygen permeation [15-17]. The thick-
nesses of GDC layers in cells 1 and 3 were 850 and 420
nm, respectively. Originally, it was intended for the com-
parison of the two samples with the same GDC thickness,
but a 420-nm-thick GDC-based cell showed highly un-
stable outputs in the measured quantities. While the peak
power density of the cell (cell 3) with an YSZ blocking
layer reached approximately 35 mW/cm2, that of the
single-layered GDC-based cell (cell 1) showed a much
lesser power density below approximately 0.01 mW/cm2,
as shown in Figure 5a,b.
To evaluate the stability of GDC/YSZ bilayered thin-

film fuel cell (cell 3), the OCV and the peak power density
gle-layered thin-film fuel cell (cell 1) and (b) a SIPO single-layered



Figure 4 FE-SEM cross-sectional image of a GDC/YSZ bilayered
thin-film fuel cell (cell 3).

Figure 6 OCV and peak power density of GDC/YSZ thin-film
fuel cell (cell 3) versus dwell time at 450°C.
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were measured for 4 h at 450°C, as shown in Figure 6.
While reduction of the OCV was negligible, the peak
power density sharply decreased by approximately 30%
after 4 h. This sharp performance degradation in the AAO-
supported thin-film fuel cells was previously studied by
Kwon et al. [32]. They ascribed the reason to the agglomer-
ation of the Pt thin-film without microstructural supports.
In line with the explanation, the agglomeration of Pt parti-
cles was clearly visible when comparing the surface morph-
ologies before and after a cell test, and the degradation of
power output caused by the Pt cathode agglomeration was
also confirmed through AC impedance measurements.
Nevertheless, the stability of AAO-supported GDC/YSZ
thin-film fuel cells was relatively superior to ‘freestanding’
thin-film fuel cells with silicon-based substrates [33].
Actually, the configuration of the AAO-supported thin-
Figure 5 Electrochemical performances of cells 1 and 3. (a) A 850-nm-
electrolyte fuel cell (cell 3) measured at 450°C.
film fuel cells was maintained after 10 h at 450°C. How-
ever, it was reported that freestanding thin-film fuel
cells were all broken before 1 h in the same operational
conditions [29,33].

Conclusions
In this study, we implemented and suggested a promis-
ing feasibility of a thin-film low-temperature SOFC
using a bilayered electrolyte configuration on the AAO
platform. GDC has suffered from its chemical instability
and the resulting electronic leakage under a reduction
environment. In a thin-film configuration for securing a
decent oxygen ion conductivity even at low temperatures
(as an LT-SOFC), oxygen permeation through the GDC
film became problematic as well. This paper reports that
an insertion of a very thin ALD YSZ layer between the
thick GDC electrolyte fuel cell (cell 1) and (b) a 460-nm-thick GDC/YSZ
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anode Pt and the GDC electrolyte significantly improved
the electrochemical performance of a cell. At 450°C, a
thin-film fuel cell with 850-nm-thick GDC electrolyte
showed an OCV of approximately 0.3 V and a power
density of approximately 0.01 mW/cm2. On the other
hand, a thin-film fuel cell with a bilayered electrolyte
consisting of a 40-nm-thick YSZ and a 420-nm-thick
GDC reached an OCV of approximately 1.07 V and a
power density of approximately 35 mW/cm2. From these
results, it was confirmed that the YSZ layer successfully
acted as a protective layer. The cell performance is
expected to further improve through the microstructural
optimization of electrode interfaces and adjustment of
chemical compositions of each film.
While the fully functional YSZ layer presented here is

already very thin (40 nm), there are good chances of redu-
cing the thickness even further considering that a theoret-
ical approach predicted an YSZ-to-GDC thickness ratio of
0.01% would suffice to guarantee electron blockage [30].
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