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Dielectric relaxation of high-k oxides
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Abstract

Frequency dispersion of high-k dielectrics was observed and classified into two parts: extrinsic cause and intrinsic
cause. Frequency dependence of dielectric constant (dielectric relaxation), that is the intrinsic frequency dispersion,
could not be characterized before considering the effects of extrinsic frequency dispersion. Several mathematical
models were discussed to describe the dielectric relaxation of high-k dielectrics. For the physical mechanism, dielec-
tric relaxation was found to be related to the degree of polarization, which depended on the structure of the high-
k material. It was attributed to the enhancement of the correlations among polar nanodomain. The effect of grain
size for the high-k materials' structure mainly originated from higher surface stress in smaller grain due to its higher
concentration of grain boundary.
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Background
As the thickness of SiO2 gate dielectric films used in
complementary metal oxide semiconductor (CMOS) de-
vices is reduced toward 1 nm, the gate leakage current
level becomes unacceptable [1-4]. Extensive efforts have
been focused on finding alternative gate dielectrics for
future technologies to overcome leakage problems [5-7].
Oxide materials with large dielectric constants (so-called
high-k dielectrics) have attracted much attention due to
their potential use as gate dielectrics in metal-oxide-
semiconductor field-effect transistor (MOSFETs) [8-12].
Thicker equivalent oxide thickness, to reduce the leak-
age current of gate oxides, is obtained by introducing
the high-k dielectric to real application [13-15].
There are a number of high-k dielectrics that have

been actively pursued to replace SiO2. Among them are
cerium oxide CeO2 [16-23], cerium zirconate CeZrO4

[24], gadolinium oxide Gd2O3 [25-27], erbium oxide
Er2O3 [28,29], neodymium oxide Nd2O3 [30,31],
aluminum oxide Al2O3 [32,33], lanthanum aluminum
oxide LaAlO3 [34,35], lanthanum oxide La2O3 [36], yt-
trium oxide Y2O3 [37], tantalum pentoxide Ta2O5 [38],
titanium dioxide TiO2 [39], zirconium dioxide ZrO2
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[40,41], lanthanum-doped zirconium oxide LaxZr1−xO2−δ

[42,43], hafnium oxide HfO2 [44], HfO2-based oxides
La2Hf2O7 [45], CexHf1-xO2 [46], hafnium silicate HfSixOy

[47], and rare-earth scandates LaScO3 [48], GdScO3

[49], DyScO3 [50], and SmScO3 [51]. Among them,
HfO2, HfO2-based materials, ZrO2, and ZrO2-based ma-
terials are considered as the most promising candidates
combining high dielectric permittivity and thermal sta-
bility with low leakage current due to a reasonably high
barrier height that limits electron tunneling. CeO2 is also
proposed to be a possible gate dielectric material, be-
cause CeO2 has high dielectric constant. CeO2 has suc-
cessfully been added to HfO2 in order to stabilize the
high-k cubic and tetragonal phases. Consequently,
LaxZr1−xO2−δ, La2Hf2O7, CexHf1−xO2, and CeO2 have re-
ceived lots of attention for promising high-k gate dielec-
tric materials for potential applications in sub-32-nm
node CMOS devices.
Since dielectric relaxation and associated losses im-

paired MOSFET performance, the larger dielectric relax-
ation of most high-k dielectrics compared with SiO2 was
a significant issue for their use [52-57]. However, there
is insufficient information about dielectric relaxation of
high-k thin films, which prompts us to investigate the
phenomenon and the underlying mechanism. In this
paper, the dielectric relaxation of the high-k dielectric
was reviewed. The extrinsic causes of frequency disper-
sion during C-V measurement were studied before valid-
ating dielectric relaxation. In order to describe dielectric
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relaxation, many mathematic models were proposed.
After mathematical models were finalized for fitting ex-
perimental data, physical mechanisms of dielectric relax-
ation were under investigation. Dielectric relaxation
behaviors observed in the high-k dielectrics were partly
due to the level of stress in the crystalline grains, de-
pending on the grain size, analogous to the behavior of
ferroelectric ceramics. As surface stress changes, glass-
like transition temperature varied considerably. Dielec-
tric relaxation appears to be a common feature in
ferroelectrics associated with non-negligible ionic
conductivity.
Methods
Sample preparation
HfO2, ZrO2, and LaAlO3 thin films were deposited on
n-type Si(100) substrates using liquid injection metal or-
ganic chemical vapor deposition (MOCVD) or atomic
layer deposition (ALD), carried out on a modified Aix-
tron AIX 200FE AVD reactor (Herzogenrath, Germany)
fitted with the “Trijet”™ liquid injector system. During
the MOCVD experiments, oxygen was introduced at the
inlet of the reactor. For the ALD experiments, the oxy-
gen was replaced by water vapor, which was controlled
by a pneumatic valve. The substrate was rotated
throughout all experiments for good uniformity. Auger
electron spectroscopy (AES) results suggested they are
stoichiometric films. All the high-k dielectric layers con-
sidered were 16 nm in thickness.
LaxZr1−xO2−δ thin films were deposited onto n-type Si

(100) wafers by the same modified Aixtron AIX 200FE
AVD reactor liquid injection ALD at 300°C. Both Zr and
La sources were Cp-based precursors ([(MeCp)2ZrMe
(OMe)] and [(iPrCp)3La]). The La concentration was
varied in different films. Particular attention has been
given to the results from films with a La concentration
of x = 0.09 (55 nm) and x = 0.35 (35 nm) but results are
also included from films with a concentration of x = 0.22
(50 nm) and x = 0, i.e., un-doped ZrO2 (35 nm). Post de-
position annealing was performed at 900°C in a pure N2

ambient for 15 min. To form MOS capacitors (Au/
LaxZr1−xO2/IL/n-Si, where IL stands for interfacial
layer), metal (Au) gate electrodes with an effective con-
tact area of 4.9 × 10−4 cm2 were evaporated onto the
samples. The backsides of the Si samples were cleaned
with a buffered HF solution and subsequently a 200-nm-
thick film of Al was deposited by thermal evaporation to
form an ohmic back contact.
La2Hf2O7 thin films were deposited on n-type Si(100)

substrates by the same liquid injection ALD at 300°C.
Both Hf and La sources are Cp-based precursors
([(MeCp)2HfMe(OMe)] and [(iPrCp)3La]). The compos-
ition of the La-doped HfO2 thin films was estimated to
be La2Hf2O7. Selected thin films were subjected to 900°C
post-deposition annealing (PDA) in N2 for 15 min.
Amorphous CexHf1−xO2 thin films (x = 0.1) were de-

posited on n-type Si(100) substrates using the same li-
quid injection ALD. The doping level was varied up to a
concentration level of 63%, i.e., x = 0.63. The interfacial
layer between high-k thin film and silicon substrate is ap-
proximately 1-nm native SiO2. Samples were then annealed
at 900°C for 15 min in an N2 ambient to crystallize the
thin films.
CeO2 thin films used the same liquid injection ALD

for deposition. The precursor was a 0.05 M solution of
[Ce(mmp)4] in toluene and a source of oxygen was de-
ionized water. ALD procedures were run at substrate
temperatures of 150, 200, 250, 300, and 350°C, respect-
ively. The evaporator temperature was 100°C and reactor
pressure was 1 mbar. CeO2 films were grown on n-Si
(100) wafers. Argon carrier gas flow was performed with
100 cm3 · min−1. The flow of [Ce(mmp)4]/purge/H2O/
purge was 2/2/0.5/3.5 s and the number of growth cycles
was 300, which is important in order to achieve high
reproducibility of film growth and precise control of
film thickness by the number of deposition cycles.
The thicknesses for the samples are within 56 nm to
98 nm. Post deposition annealing (PDA) was operated
on the 250°C as-deposited samples in vacuum at 800°C
for 15 min.
Material characterization
The physical properties of the high-k thin films were
studied using X-ray diffraction (XRD) and cross-
sectional transmission electron microscopy (XTEM).
Electrical properties of the films were obtained by
capacitance-voltage (C-V) and capacitance-frequency
(C-f ).
XRD were operated using a Rigaku Miniflex diffractom-

eter (Beijing, China) with CuKα radiation (0.154051 nm,
40 kV, 50 mA) spanning a 2θ range of 20° to 50° at a scan
rate of 0.01°/min.
Atomic force microscopy (AFM) was used to investi-

gate variations in surface morphology of these films, and
was carried out using a Digital Instruments Nanoscope
III, in contact mode.
AES was used to determine the atomic composition of

the thin films, which was carried out using a Varian
scanning Auger spectrometer (Palo Alto, CA, USA). The
atomic compositions are from the bulk of the thin film,
free from surface contamination, and were obtained by
combining AES with sequential argon ion bombardment
until comparable compositions were obtained for con-
secutive data points.
XTEM was used to obtain the film thickness and in-

formation about the crystal grain size. A JEOL 3010 or a
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JEOL 2000FX (Akishima-shi, Japan) operated at 300 and
200 keV, respectively, was used.
C-V measurements were implemented using an Agi-

lent E4980A precision LCR meter (Santa Clara, CA,
USA). C-V measurements were performed in parallel
mode, from strong inversion toward strong accumula-
tion (and vice versa), at frequencies ranging from 20 Hz
to 2 MHz. C-f measurements were carried out in a
strong accumulation region.

Results and discussion
Extrinsic frequency dispersion
Frequency dispersion was categorized into two parts: ex-
trinsic causes and intrinsic causes. The extrinsic causes
of frequency dispersion during C-V measurement in
high-k thin film (shown in Figure 1), which were studied
before validating the effects of k-value dependence, were
parasitic effect, lossy interfacial layer, and surface rough-
ness [56]. Two further potential extrinsic causes: polysi-
licon depletion effect [58-60] and quantum mechanical
confinement [61-63], for frequency dispersion were neg-
ligible if the thickness of the high-k thin film is high
enough. Polysilicon depletion effects were not consid-
ered due to the implementation of metal gate. Existing
causes of extrinsic frequency dispersion during C-V
measurement in the high-k thin film were the parasitic
effect (including back contact imperfection resistance RS

’

and capacitance CS
” , cables resistance RS

” and capacitance
CS
” , substrate series resistance RS, and depletion layer

capacitance of silicon CD) and the lossy interfacial layer
effect (interfacial layer capacitance Ci and conductance Gi).
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Figure 1 Causes of frequency dispersion during C-V measurement in
Surface roughness effect and polysilicon depletion effect
were included, where high-k capacitance Ch, high-k con-
ductance Gh, the lossy interfacial layer capacitance Ci and
conductance Gi were given. The oxide capacitance Cox

consisted of the high-k capacitance Ch and the lossy inter-
facial layer capacitance Ci.
Parasitic effects in MOS devices included parasitic re-

sistances and capacitances such as bulk series resis-
tances, series contact, cables, and many other parasitic
effects [64-67]. However, only two of them which had
influential importance are listed as follows: (1) the series
resistance RS of the quasi-neutral silicon bulk between
the back contact and the depletion layer edge at the sili-
con surface underneath the gate; and (2) the imperfect
contact of the back of the silicon wafer. Dispersion could
be avoided by depositing an Al thin film at the back of
the silicon substrate. The correction models were able to
minimize the dispersion as well. Then, it has been dem-
onstrated that once the parasitic components are taken
into account, it was possible to determine the true cap-
acitance values free from errors.
The existence of frequency dispersion in the LaAlO3

sample was discussed in the previous work [68], which
was mainly due to the effect of the lossy interfacial layer
between the high-k thin film and silicon substrate on the
MOS capacitor. The frequency dispersion effect was sig-
nificant even with the Al back contact and the bigger
substrate area. In this case, Ch (CET = 2.7 nm) was com-
parable with Ci (approximately 1-nm native SiO2) and
the frequency dispersion effect was attributed to losses
in the interfacial layer capacitance, caused by interfacial
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Figure 2 Frequency dependence of k value extracted from C-f
measurements in the MOS capacitors with high-k
dielectrics [52,55,56].
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dislocation and intrinsic differences in the bonding co-
ordination across the chemically abrupt ZrO2/SiO2

interface. Relative thicker thickness of the high-k thin
film than the interfacial layer significantly prevented fre-
quency dispersion. Also, extracted C-V curves were re-
constructed by a four-element circuit model for high-k
stacks, adapted from a dual frequency technique [69],
with the capacitance value reconstructed from the loss.
Frequency dispersion from the effect of surface rough-

ness was best demonstrated in an ultra-thin SiO2 MOS
device [70]. To investigate whether the unwanted fre-
quency dispersion of the high-k materials (LaxZr1−xO2−δ)
was caused by the surface roughness or not, the surface
properties of the LaxZr1−xO2−δ thin films was studied
using AFM [52]. The root mean square (RMS) roughness
of the x = 0.35 thin film was 0.64 nm after annealing.
However, no significant roughness was observed for the
x = 0.09 thin film (RMS roughness of 0.3 nm). It means
that the x = 0.35 thin film had more surface roughness than
the x = 0.09 thin film. The annealed thin film with x = 0.09
had large frequency dispersion. However, the annealed thin
film with x = 0.35 showed small frequency dispersion. By
comparing these results from the C-V measurements, it
has led to the conclusion that the surface roughness was
not responsible for the observed frequency dispersion of
the high-k dielectric thin films (LaxZr1−xO2−δ).

Intrinsic frequency dispersion: mathematic models
After careful considerations of the above extrinsic causes
for frequency dispersion, high-k capacitance Ch was de-
termined. A is the area of the MOS capacitance and th is
the thickness of the high-k oxides. Via the equation
below, dielectric constant (k) was able to be extracted
from the high-k capacitance.

Ch ¼ Akε0
th

ð1Þ

Frequency dispersion can now solely be associated with
the frequency dependence of the k-value. The frequency
dependence of the k value can be extracted as shown in
Figure 2. The figure showed no frequency dependence of
the k value in LaAlO3/SiO2, ZrO2/SiO2 and SiO2 stacks
[56]. However, the frequency dependence of the k-value
was observed in LaxZr1–xO2/SiO2 stacks [52]. The zirco-
nium thin film with a lanthanum (La) concentration of
x = 0.09 showed a sharp decreased k-value and suffered
from a severe dielectric relaxation. A k value of 39 was ob-
tained at 100 Hz, but this value was reduced to a k value
of 19 at 1 MHz. The 10% Ce-doped hafnium thin film
[55] also had a k value change from 33 at 100 Hz to 21 at
1 MHz. In order to interpret intrinsic frequency disper-
sion, many dielectric relaxation models were proposed in
terms with frequency dependence of k value.
In 1889, the Curie-von Schweidler (CS) law was firstly
announced and developed later in 1907 [71,72]. The
general type of dielectric relaxation in time domain can
be described by the CS law (the t−n behavior, 0 ≤ n ≤ 1).

dP tð Þ
dt

∝t−n; ð2Þ

where P(t) represented the polarization and the exponent
n indicated the degree of dielectric relaxation. After a Fou-
rier transform, the complex susceptibility CS relation is:

χCS ¼ A iωð Þn−1; ð3Þ
where A and n were the relaxation parameters, ε∞ was the
high frequency limit of the permittivity, χCS = [εCS ×
(ω) − ε∞]/(εs − ε∞) was the dielectric susceptibility related
to the CS law. The value of the exponent (n) indicated the
degree of dielectric relaxation. The exponent values n was
a weak dependence of the permittivity on frequency. An
n − 1 value of zero would indicate that the dielectric per-
mittivity was frequency independent. The majority of the
model was based on the presence of compositional or
structural inhomogeneities and body effects.
In 1929, Debye described a model for the response of

electric dipoles in an alternating electric field [73]. In
time domain, the response of the polarization is:

dP tð Þ
dt

¼ −
P tð Þ
τ

ð4Þ

P tð Þ ¼ P0exp −
t
τ

� �
ð5Þ

Unlike the CS law of power law, Debye law was an
equation of exponential. As two main branches in the
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development of dielectric relaxation modeling, the CS
and Debye are the origins along the evolution beyond
doubt. The Debye model led to a description for the
complex dielectric constant ε*. An empirical expression,
which originated from the Debye law, was proposed by
Kohlrausch, Williams, and Watts, which is a stretched
exponential function, to be referred to later as the
Kohlrausch-Williams-Watts (KWW) function widely
used to describe the relaxation behavior of glass-
forming liquids and other complex systems [74-76]. The
equivalent of the dielectric response function in time
domain is

P tð Þ ¼ P0exp −
t
τ

� �βKWW
� �

ð6Þ

After a Fourier transform, the Debye equation in the
frequency domain and its real and imaginary parts are

ε� ωð Þ ¼ ε∞ þ εs−ε∞
1þ iωτð Þ ð7Þ

ε
0
ωð Þ ¼ ε∞ þ εs−ε∞

1þ ω2τ2
ð8Þ

ε
00
ωð Þ εs−ε∞ð Þωτ

1þ ω2τ2
ð9Þ

where τ was called the relaxation time which was a func-
tion of temperature and it was independent of the time
angular frequency ω = 2πf. εs was also defined as the
zero-frequency limit of the real part, ε’, of the complex
permittivity. ε∞ was the dielectric constant at ultra-high
frequency. Finally, ε’ was the k value.
The Debye theory assumed that the molecules were

spherical in shape and dipoles were independent in their
response to the alternating field with only one relaxation
time. Generally, the Debye theory of dielectric relaxation
was utilized for particular types of polar gases and dilute
solutions of polar liquids and polar solids. However, the
dipoles for a majority of materials were more likely to be
interactive and dependent in their response to the alter-
nating field. Therefore, very few materials completely
agreed with the Debye equation which had only one re-
laxation time.
Since the Debye expression cannot properly predict

the behavior of some liquids and solids such as chlori-
nated diphenyl at −25°C and cyclohexanone at −70°C, in
1941, Cole K.S. and Cole R.H. proposed an improved
Debye equation, known as the Cole-Cole equation, to in-
terpret data observed on various dielectrics [77]. The
Cole-Cole equation can be represented by ε*(ω):

ε� ωð Þ ¼ ε∞ þ εs−ε∞
1þ iωτð Þ1−α ; ð10Þ

where τ was the relaxation time and α was a constant
for a given material, having a value 0 ≤ α ≤ 1. α = 0 for
Debye relaxation. The real and imaginary parts of the
Cole-Cole equation are

ε
0
ωð Þ ¼ ε∞

þ εs−ε∞ð Þ 1þ ωτð Þ1−α sin 1
2 απ
� �

1þ 2 ωτð Þ1−α sin 1
2 απ
� �þ ωτð Þ2 1−αð Þ

ð11Þ

ε
00
ωð Þ ¼ εs−ε∞ð Þ 1þ ωτð Þ1−α cos 1

2 απ
� �

1þ 2 ωτð Þ1−α sin 1
2 απ
� �þ ωτð Þ2 1−αð Þ

ð12Þ

Ten years later, in 1951, Davidson et al. proposed the
following expression (Cole-Davidson equation) to inter-
pret data observed on propylene glycol and glycerol
[78-81] based on the Debye expression:

ε� ωð Þ ¼ ε∞ þ εs−ε∞
1þ iωτð Þβ ; ð13Þ

where τ was the relaxation time and β was a constant
for a given material. 0 ≤ β ≤ 1 which controlled the width
of the distribution and β = 1 for Debye relaxation. The
smaller the value of β, the larger the distribution of re-
laxation times. The real and imaginary parts of the Cole-
Davidson equation are given by

ε
0
ωð Þ ¼ ε∞ þ εs−ε∞ð Þ cosφð Þβ cosβφ ð14Þ

ε
00
ωð Þ ¼ εs−ε∞ð Þ cosφð Þβ sinβφ ð15Þ

φ ¼ tan−1 ωτð Þ ð16Þ

Both the Cole-Cole and Cole-Davidson equations were
empirical and could be considered to be the conse-
quence of the existence of a distribution of relaxation
times rather than that of the single relaxation time
(Debye equation). After 15 years, in 1966, S. Havriliak
and S. J. Negami reported the Havriliak-Negami (HN)
equation which combined the Cole-Cole and Cole-
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Davidson equations for 21 polymers [82-84]. The HN
equation is

ε� ωð Þ ¼ ε∞ þ εs−ε∞

1þ iωτð Þ1−α� 	β ð17Þ

The real and imaginary parts of the HN equation are
given by

ε
0
ωð Þ ¼ ε∞

þ εs−ε∞ð Þ cos βΦð Þ
1þ 2 ωτð Þ1−α sin πα

2

� �þ ωτð Þ2 1−αð Þ
h iβ

2

ð18Þ

ε
00
ωð Þ ¼ εs−ε∞ð Þ sin βΦð Þ

1þ 2 ωτð Þ1−α sin πα
2

� �þ ωτð Þ2 1−αð Þ
h iβ

2

ð19Þ

Φ ¼ tan−1
ωτð Þ1−α cos 12πα

1þ ωτð Þ1−α sin 1
2πα

ð20Þ

where α and β were the two adjustable fitting parame-
ters. α was related to the width of the loss peak and β
controlled the asymmetry of the loss peak. In this model,
parameters α and β could both vary between 0 and 1.
The Debye dielectric relaxation model with a single re-
laxation time from α = 0 and β = 1, the Cole-Cole model
with symmetric distribution of relaxation times followed
for β = 1 and 0 ≤ α ≤ 1, and the Cole-Davidson model
with an asymmetric distribution of relaxation times fol-
lows for α = 0 and 0 ≤ β ≤ 1. The HN equation had two
distribution parameters α and β but Cole-Cole and
Cole-Davidson equations had only one. HN model in
the frequency domain can accurately describe the dy-
namic mechanical behavior of polymers, including the
height, width, position, and shape of the loss peak. The
evolution map for Debye, Cole-Cole, Cole-Davidson, and
HN model is shown in Figure 3.
A theoretical description of the slow relaxation in

complex condensed systems is still a topic of active re-
search despite the great effort made in recent years.
There exist two alternative approaches to the interpret-
ation of dielectric relaxation: the parallel and series
models [54]. The parallel model represents the classical
relaxation of a large assembly of individual relaxing en-
tities such as dipoles, each of which relaxes with an
exponential probability in time but has a different relax-
ation time. The total relaxation process corresponds to a
summation over the available modes, given a frequency
domain response function, which can be approximated by
the HN relationship.
The alternative approach is the series model, which

can be used to describe briefly the origins of the CS law.
Consider a system divided into two interacting sub-
systems. The first of these responds rapidly to a stimulus
generating a change in the interaction which, in turn,
causes a much slower response of the second sub-
system. The state of the total system then corresponds
to the excited first system together with the un-
responded second system and can be considered as a
transient or meta-stable state, which slowly decays as
the second system responds.
In some complex condensed systems, neither the pure

parallel nor the pure series approach is accepted and in-
stead interpolates smoothly between these extremes. For
the final fitting of the frequency domain response, the
frequency dependence of complex permittivity ε*(ω) can
be combined with the CS law and the modified Debye
law (HN law) [52]:

ε� ωð Þ ¼ ε∞ þ χ�CS ωð Þ þ χ�HN ωð Þ− iσDC
ωεS

ð21Þ

χ�CS ωð Þ ¼ A iωð Þn−1 ð22Þ

χ�HN ωð Þ ¼ εs−ε∞

1þ iωτð Þ1−α� 	β ð23Þ

where ε∞ was the high-frequency limit permittivity, εs is
the permittivity of free space, σDC is the DC conductivity.
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The parameters in the equation are in the form of physical
meanings (activation energy: EA):

τ ¼ τ0exp −
EA;τ

k T−T τð Þ
� �

ð24Þ

σDC ¼ σ0exp −
EA;σ

k T−T σð Þ
� �

ð25Þ

α ¼ α0exp −
EA;α

k T−Tαð Þ
� �

ð26Þ

β ¼ β0exp −
EA;β

k T−Tβ

� �
" #

ð27Þ

n ¼ n0exp −
EA;n

k T−Tnð Þ
� �

ð28Þ

The HN law was a modified Debye equation via evolu-
tion. Thus, the CS and HN laws in the time domain repre-
sented the original power-law and exponential dependence,
respectively. Most of dielectric relaxation data were able to
be modeled by the final fitting law: the combined CS +HN
laws.
Based on the discussion above, the dielectric relaxation

results of La0.35Zr0.65O2 for the as-deposited and PDA
samples (shown in Figure 4) have been modeled with the
CS and/or HN relationships (see solid lines in Figure 4)
[54]. The relaxation of the as-deposited film obeyed a
combined CS + HN law. After the 900°C PDA, the relax-
ation behavior of the N2-annealed film was dominated
by the CS law, whereas the air-annealed film was pre-
dominantly modeled by the HN relationship that was
accompanied by a sharp drop in the k value.
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Figure 4 Dielectric relaxation results of as-deposited and
annealed La0.35Zr0.65O2 samples [54].
The frequency-dependent change in the real and im-
aginary permittivity of La2Hf2O7 dielectric for the as-
deposited and PDA samples is shown in Figure 5 [53].
Clearly, the PDA process improved the dielectric relax-
ation and reduced the dielectric loss. The dielectric re-
laxation of the PDA films was revealed to be dominated
mainly by the CS law (n = 0.9945, see two dot lines in
Figure 5) at f < 3 × 104 Hz. However, at f > 3 × 104 Hz,
the HN law plays an important role (α = 0.08, β = 0.45,
and τ = 1 × 10−8 s, see two solid lines in Figure 5). The
dielectric loss reduces at f < 3 × 104 Hz because an in-
crease of the interfacial layer thickness caused the reduc-
tion of the DC conductivity.
Frequency dependence of the k value was extracted

from C-f measurements observed in the LaxZr1−xO2−δ

thin films (shown in Figure 6) [56]. Solid lines are from
fitting results from the Cole-Davidson equation, while
the dashed line is from the HN equation. The parame-
ters α, β, and τ are from the Cole-Davidson or HN equa-
tion. The Cole-Cole and Cole-Davidson equation could
fit the dielectric relaxation results of the La0.91Zr0.09O2,
La0.22Zr0.78O2, La0.35Zr0.65O2, and La0.63Zr0.37O2 thin
films. The LaxZr1−xO2−δ thin films can be also modeled
by the HN equation more accurately than the Cole-Cole
and Cole-Davidson equations.

Intrinsic frequency dispersion: physical mechanisms
A dielectric material is a non-conducting substance
whose bound charges are polarized under the influence
of an externally applied electric field. The dielectric be-
havior must be specified with respect to the time or fre-
quency domain. Different mechanisms show different
dynamic behavior in time domain. In consequence,
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Figure 5 Dielectric relaxation results in the real and imaginary
permittivity of as-deposited and annealed La2Hf2O7

samples [53].



Figure 6 Dielectric relaxation results of as-deposited LaxZr1−xO2−δ

samples [56].

Zhao et al. Nanoscale Research Letters 2013, 8:456 Page 8 of 12
http://www.nanoscalereslett.com/content/8/1/456
adsorption occurs at different windows in frequency do-
main. For the physical mechanism of the dielectric relax-
ation, Figure 7 is to describe the degree of polarization
in a given material within frequency domain [85].
The response of the dielectric relaxation in lower fre-

quency range is firstly categorized into the interface
polarization. In the region, surfaces, grain boundaries,
inter-phase boundaries may be charged, i.e., they contain
dipoles which may become oriented to some degree in
an external field and thus contribute to the polarization
of the material. It is orientation polarization as frequency
increasing. Here, the material must have natural dipoles
which can rotate freely. As the frequency increases
Figure 7 Physical mechanisms of dielectric relaxation in real
and imaginary parts [85].
further, dielectric relaxation is termed as ionic and elec-
tronic polarization. The mutual displacement of negative
and positive sub-lattice in ionic crystals has happened.
In this case a solid material must have some ionic char-
acter. Then, it is observed that there is displacement of
electron shell against positive nucleus. Also, the region
is called atomic polarization. In a summary, it is clear
that the degree of polarization is related to the structure
of the material. In consequence, dielectric behavior in
electrostatic and alternating electric fields depends on
static and dynamical properties of the structure.
XTEM was carried out on both x = 0.09 and x = 0.35

lanthanum-doped zirconium oxide samples. Images from
the annealed samples are shown in Figure 8a,b [52].
These images show that equiaxed nanocrystallites of ap-
proximately 4-nm diameter form in the x = 0.09 sample,
in contrast to a larger crystal of approximately 15-nm
diameter for the x = 0.35 sample. This trend is also con-
sistent with the average grain size estimated using a
Scherrer analysis of the XRD data shown in Figure 8c
[52], which gives similar values. In Figure 8d, for the x =
0.35 dielectric (open and closed circle symbols), anneal-
ing improves the dielectric relaxation and there is less of
an effect on the k value, i.e., there is a small increase in
the k value at some frequencies and there is a flatter fre-
quency response compared to the as-deposited sample
[52]. The film with a La content of x = 0.09 has a signifi-
cant increase in the k value of the dielectric and also has
a large dielectric relaxation. For the x = 0.09 as-
deposited sample, the k values are lower and annealing
(and hence crystallization into predominantly tetragonal
or cubic phase) produces the higher k values. It is pos-
sible that the dielectric relaxation behavior observed is
due to the level of stress in the crystalline grains, de-
pending on the grain size, analogous to the behavior of
ferroelectric ceramics.
An interesting correlation of CeO2 as high-k thin film

between grain size and dielectric relaxation was further
discussed afterwards [57]. Figure 9a,b shows XRD dif-
fraction patterns for the as-deposited and annealed sam-
ples, respectively. PDA in vacuum at 800°C for 15 min
causes an increase in the size of the crystalline grains.
The grain size of the annealed sample (9.55 nm) is larger
than the original sample (8.83 nm). In order to investi-
gate the frequency dispersion for CeO2, normalized di-
electric constant in Figure 9b is quantitatively utilized to
characterize the dielectric constant variation. It is ob-
served that the dielectric relaxation for the as-deposited
sample (triangle symbol) is much serious than the
annealed one (square symbol). The smaller the grain
size, the more intense is the dielectric relaxation. These
findings are in good agreement with the theoretical and
experimental studies proposed by Yu et al. [86], which
reported the effect of grain size on the ferroelectric



Figure 8 XTEM (a,b), XRD (c), and k-f data (d) of annealed and
as-deposited samples. (a) XTEM of annealed La0.09Zr0.91O2 sample.
(b) XTEM of annealed La0.35Zr0.65O2 sample. (c) XRD of as-deposited
LaxZr1−xO2−δ. (d) k-f data of as-deposited and annealed
LaxZr1−xO2−δ [52].

Figure 9 XRD of (a) and normalized dielectric constants (b) for
as-deposited and annealed CeO2 samples. (b) Under different
frequencies [57].

Zhao et al. Nanoscale Research Letters 2013, 8:456 Page 9 of 12
http://www.nanoscalereslett.com/content/8/1/456
relaxor behavior in CaCu3TiO12 (CCTO) ceramics
(shown in inset of Figure 9b). The dielectric relaxation
for the small grain size sample is the worst. The effect of
grain size mainly originates from higher surface stress in
smaller grain due to its higher concentration of grain
boundary. Surface stress in grain is high, medium and
low for the small, medium, and large grain size CCTO
samples. As surface stress increases, the glasslike transi-
tion temperature decreases considerably. It is attributed
to the enhancement of the correlations among polar
nanodomains.
XRD diffraction patterns for the as-deposited CeO2

thin films at 150, 200, 250, 300, and 350°C, respectively,
are shown in the inset of Figure 10a [57]. The grain size
value is obtained in Figure 10a using the Scherrer for-
mula based on the XRD data. There is a clear trend that



Figure 10 Grain sizes (a) and normalized dielectric constants
(b) for as-deposited CeO2 samples. (a) With various deposition
temperatures. (b) Under different frequencies [57].
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the grain size increases with increasing deposition tem-
peratures. In Figure 10b, large dielectric relaxation is ob-
served for the sample of 6.13 nm (diamond symbol) [57].
When the deposition temperature increases, the dielectric
relaxation is even worse for the sample of 6.69 nm (square
symbol). In addition, the most severe dielectric relaxation
is measured for the sample of 8.83 nm (star symbol). The
sample of 15.85 nm (triangle symbol) has significant im-
provement on the dielectric relaxation and the sample of
23.62 nm (round symbol) shows more stable frequency
response. Similarly, the effect of grain size on the diel-
ectric relaxation is found on the Nd-doped Pb1−3x/2Ndx
(Zr0.65Ti0.35)O3 composition (PNZT) [87], where x = 0.00,
0.01, 0.03, 0.05, 0.07, and 0.09, respectively. It is observed
in the inset of Figure 10b that the deteriorative degree of
dielectric relaxation increases from 12.1 nm, reaches the
peak at 22.5 nm, and then declines. One possible reason
for the observation above could be due to the broadened
dielectric peak and the transition temperature shift. The
transition temperature of PNZT samples is found to shift
forward to lower temperature with the grain size from
12.1 to 22.5 nm, while the transition temperature remains
at the same position with further increasing grain size.
Such strong frequency dispersion in the dielectric con-
stant appears to be a common feature in ferroelectrics as-
sociated with non-negligible ionic conductivity.

Conclusions
In C-V measurements, frequency dispersion in high-k
dielectrics is very common to be observed. Dielectric re-
laxation, that is the intrinsic frequency dispersion, could
not be assessed before suppressing the effects of extrinsic
frequency dispersion. The dielectric relaxation models in
the time domain (such as the Debye law and the CS law)
and in the frequency domain after the Fourier transform
(such as the Cole-Cole equation, the Cole-Davidson equa-
tion, the HN equation) were comprehensively considered.
The relationship between the grain size and dielectric re-
laxation is observed in lanthanum-doped zirconium oxide
samples. The mechanisms of grain size effects for CeO2

are discussed accordingly. A similar relationship between
the grain size and dielectric relaxation is also found in
CCTO and Nd-doped PNZT samples. The mechanism is
attributed to the alignment enhancement of the polar
nanodomains.
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