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Small-area and compact CMOS emulator circuit
for CMOS/nanoscale memristor co-design
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Abstract

In this paper, a CMOS emulator circuit that can reproduce nanoscale memristive behavior is proposed. The
proposed emulator circuit can mimic the pinched hysteresis loops of nanoscale memristor memory's
current-voltage relationship without using any resistor array, complicated circuit blocks, etc. that may
occupy very large layout area. Instead of using a resistor array, other complicated circuit blocks, etc., the
proposed emulator circuit can describe the nanoscale memristor's current-voltage relationship using a
simple voltage-controlled resistor, where its resistance can be programmed by the stored voltage at the
state variable capacitor. Comparing the layout area between the previous emulator circuit and the proposed
one, the layout area of the proposed emulator circuit is estimated to be 32 times smaller than the previous
emulator circuit. The proposed CMOS emulator circuit of nanoscale memristor memory will be very useful
in developing hybrid circuits of CMOS/nanoscale memristor memory.
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Background
Memristors are being intensively explored as possible
candidate for future memories because of simplicity in
fabrication, possibility in three-dimensional integra-
tion, compatibility with (complementary metal-oxide-
semiconductor) CMOS technology in the fabrication
process, and so on. However, real integration of mem-
ristors and CMOS circuits is very rarely available to
most engineers and scholars who want to be involved
in designing various kinds of CMOS circuits using
memristors. To help those engineers and scholars
who cannot access memristor fabrication technology
but want to design memristor circuits, a CMOS emu-
lator circuit that can reproduce the physical hyster-
esis loop of memristor's voltage-current relationship
is needed.
Methods
Before we develop a CMOS emulator circuit for memris-
tor, memristive behavior should be explained first. The
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following simple equation (Equation 1) can describe the
memristor's current-voltage relationship [1,2]:
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Here v(t) and i(t) represent the voltage and current of
memristor, respectively. RX(t) is the memristance that
changes with respect to time. RSET and RRESET are SET and
RESET resistance, respectively. w(t) is the effective width
of the memristor. D is the total drift length of w(t). q(t) is
an accumulated charge flow through the memristor. QCRIT

means an amount of critical charge to RESET-to-SET
transition. When q(t) becomes equal to QCRIT, RX(t) is
changed to RSET from RRESET. Here μv is the mobility of
dopant in Equation 1 [1,2].
To describe the memristive behavior that follows the

relationship of current and voltage in Equation 1, a few
emulator circuits have already been proposed [3-5].
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Pershin and Ventra proposed an emulator circuit that
is composed of an analog-to-digital converter and micro-
controller that are implemented by discrete off-chip de-
vices. Thus, they can be considered too much complicated
and too large to be integrated in a single chip [3]. Jung
et al. proposed an emulator circuit that is based on CMOS
technology [4], where a memristor that should change its
resistance in response to the applied current and voltage
is implemented by an array of resistors. In the emulator
circuit with resistor array, the analog-to-digital converter
and the decoder circuit select a proper resistor among
many resistors that are placed in the resistor array
according to the applied voltage or current [4]. One
problem in the emulator circuit [4] is that the voltage-
current relationship seems sawtooth. This is because
the resolution of memristance change is decided by the
resolution of the analog-to-digital converter, as you see
in [4]. If we have 4-bit analog-to-digital converter in
the emulator circuit, it means that only 16 values of
memristance are available. As a result, when we apply
a voltage that is a sinusoidal function to the memristor,
we can know that its current is increased or decreased
like sawtooth. To improve the resolution of memristance
change, the resolution of the analog-to-digital converter
should be increased too. If the resolution of the analog-
to-digital converter is improved from 4 to 5 bit, the
voltage-current relationship of the emulator circuit with
5 bit seems to be much finer than the emulator circuit
with a 4-bit analog-to-digital converter, as shown in [4].
To improve the resolution twice, however, the number of
resistors in the resistor array should be double too. It can
cause a large area overhead in realizing this emulator circuit
in a single chip. Especially, in implementing memristor
array with this emulator circuit, this large area overhead
of each memristor emulator cell can be a serious problem
because each cell in the memristor array should be realized
by this large-area single memristor emulator.
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Figure 1 The proposed CMOS emulator circuit for describing memris
To mitigate the large area overhead of the previous
emulator circuit, we propose a new emulator circuit
of memristors that is more compact and simpler than
the previous emulator circuits [6]. The new emulator
circuit does not use a resistor array, an analog-to-digital
converter, and so on that usually occupy very large area.
Instead of using the complicated circuit blocks that were
mentioned just earlier, the new circuit can change its
memristance value by a simple voltage-controlled resistor
that can be realized by a single n-type metal-oxide-
semiconductor field-effect transistor (NMOSFET) device.
Newly proposed emulator circuit for describing
memristive behavior
A schematic of the proposed emulator circuit for describ-
ing memristive behavior is shown in Figure 1. The CMOS
circuit for emulating memristive behavior is composed of
transmission gates, comparators, current mirrors, voltage-
controlled resistor, etc. as shown in Figure 1. VIN is an in-
put voltage source and VIN+ and VIN−represent the anode
and cathode of the input voltage source, respectively.
In Figure 1,VIN+ is connected to TG1 and TG2 that are
controlled by TB and T, respectively. Similarly, VIN− is
connected to TG3 and TG4 that are controlled by T
and TB, respectively. When VIN+ is greater than VIN−, T
becomes high and TB becomes low, by the comparator
G1. On the contrary, when VIN+ is smaller than VIN−, T
becomes low and TB becomes high. Thus, we can know
that VIN+ is connected to VA through TG2 when VIN+

is larger than VIN−. At the same moment, VIN− is con-
nected to the ground potential (GND) by TG3. When
VIN− is larger than VIN+, VIN− is connected to VA

through TG4, and VIN+ is biased by GND through TG1.
One thing to note here is that we can deliver the input
voltage VIN to VA without any sacrificial voltage loss,
using the transmission gate.
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The VIN delivering block that is composed of four
transmission gates, TG1, TG2, TG3, and TG4, can deliver
VIN+ and VIN− that are plus and minus polarity of VIN,
respectively, to VA that has only plus polarity, not minus.
The delivered voltage VA is copied exactly to VB by the
negative feedback circuit that is composed of the OP
amp, G2, M3, and M4. Using this circuit block, VB can
be the same as VA by the feedback amplifier with unity
gain. VB is connected to the voltage-controlled resistor
M2 that is controlled by VC. One more thing to note
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Figure 2 Simulated voltage waveforms. The simulated voltage waveform
voltage-current relationship of the proposed emulator circuit when the sin
VIN, (f) IIN, (g) VC, and (h) the pinched hysteresis loop of the voltage-curren
frequency is 40 kHz.
here is that VC controls both voltage-controlled resis-
tors M1 and M2 that are electrically isolated from each
other. By doing so, we can separate the memristor's
current from the programming current to change the
state variable that is stored at the capacitor C1. If the
memristor's current is not separated from the program-
ming current, the state variable that decides memristance
value can be maintained only at the moment when the
programming voltage or current is applied to the
memristor. If so, the emulator circuit cannot keep its
(e)

(f)

(g)

(h)

0.25[msec]

0.30 0.35 0.40 0.45
-2

0

2

V
IN

 [V
]

Time [msec]

f=40kHz

0.30 0.35 0.40 0.45
-100

0

100

IIN
[

A
]

Time [msec]

0.30 0.35 0.40 0.45

1

2

3

V
C

 [V
]

Time [msec]

-2 -1 0 1 2

-100

-50

0

50

100

M
em

ris
to

r 
cu

rr
en

t[
A

]

Memristor voltage[V]

VDD=3.3V
f=40kHz
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usoidal frequency is 10 kHz. The simulated voltage waveforms of (e)
t relationship of the proposed emulator circuit when the sinusoidal
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Figure 3 The simulation results of partial states between ‘SET’
state and ‘RESET’ state. (a) The voltage waveform of the SET pulse,
(b) the voltage waveform of the RESET pulse, and (c) the voltage
waveform of the state variable that is represented by VC in Figure 1.
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programmed state variable when the applied voltage or
current is removed.
VC that controls two voltage-controlled resistors M1

and M2 acts as a state variable in the emulator circuit
that is calculated by an amount of stored charge at C1.
When VIN+ is greater than VIN−, TG7 is on and both
TG5 and TG6 are off. At this time, the current mirror that
is composed of M5 and M6 delivers the programming
current to C1 to increase an amount of stored charge;
thereby the state variable becomes larger. On the other
hand, when VIN− is greater than VIN+, TG7 is off and both
TG5 and TG6 are on. By doing so, we can decrease the
amount of charge that is stored at the state variable
capacitorC1. The discharging current path is composed
of M7, M8, M9, and M10 in Figure 1. Here VBN and VBP

are the biasing voltages for NMOSFETs and PMOSFETs,
respectively. VBN and VBP are made from the biasing
circuit that is shown in Figure 1. D1, D2, and D3 are the
diodes that are used in the proposed emulator circuit to
limit the minimum value of VC. This minimum value of
VC is needed to avoid the dead zone which may be caused
by the sub-threshold region of the voltage-controlled
resistors M1 and M2. VD means the diode voltage of D1,
D2, and D3. VDD is the power supply voltage of the CMOS
emulator circuit in Figure 1.
One more thing to consider here is that the nonlinearity

of memristive behaviors can be found when the effective
width of memristor, w(t), in Equation 1 becomes much
closer to the boundary constraints [1,7]. This nonlinearity
near the boundary values of w(t) was introduced in the
HP model [1] and mathematically modeled by Corinto
and Ascoli [7] to describe various nonlinear behaviors of
memristors. In terms of implementation, the diode bridge
circuit with LCR filter was proposed to reproduce mem-
ristive nature with nonlinearity by using a very simple
electronic circuit [8]. In this paper, the window function
that is used to define two boundary values of the state
variable in the HP model [1] is realized in the CMOS
emulator circuit that is shown in Figure 1. The emulator
circuit in Figure 1 has two boundary values of the state
variable that is defined by VC. Here we can know that the
maximum value of VC cannot exceed VDD. And also, VC

cannot be lower than VDD-3VD. Thus, the state variable of
VC in Figure 1 can exist only between VDD and VDD-3VD,
not being higher than VDD and lower than VDD-3VD,
respectively.

Results and discussion
Figure 2a shows the applied input voltage, VIN, to the
proposed circuit for emulation of memristive behavior.
The voltage waveform is sinusoidal and its frequency and
magnitude are 10 kHz and 1.8 V, respectively. The mem-
ristor's current IIN that is emulated by the proposed circuit
in Figure 1 is shown in Figure 2b. As the sinusoidal
voltage is applied to the emulator circuit in Figure 1,
IIN changes with respect to time according to the state
variable that is represented by VC, the amount of stored
charge at C1. When VC has the lowest value, it means that
the state variable is in RESET state, where the emulator
circuit acts like a memristor with RESET resistance. After
the half cycle of sinusoidal function, VC is charged more
and more; thereby VC can reach the highest value. With
the highest value of VC, the state variable can be in SET
state, where the emulator circuit can be considered a SET
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resistance. Figure 2c shows the voltage waveform of VC

with respect to time. At the starting point of sinusoidal
function of VIN, VC is 1.2 V that is decided by D1 in
Figure 1. After the half cycle of sinusoidal function,VC

reaches 2.8 V. When one cycle of sinusoidal function is
completed, the VC value returns to the value at the
starting point of sinusoidal function. Figure 2d shows a
typical pinched hysteresis loop of a memristor's voltage
and current which are emulated by the proposed circuit in
Figure 1. In the simulation,VDD is 3.3 V and the frequency
of sinusoidal function is 10 kHz.
VREF

DOUT

RD RDB

Read circuit

.
M1

M2

M3

.

.

.

RD

M4

M5

TG1

.

anode

cathode

.

.

(a)

(b)

RD

RD

TG2

0.00 0.01 0.02
0

2

4

D
O

U
T
 [V

]

Time [ms

0.00 0.01 0.02
0

2

4

D
IN

 [V
]

Time [ms

0.00 0.01 0.02
0

2

4

R
D

 [V
]

Time [ms

0.00 0.01 0.02
0

2

4

W
R

 [V
]

Time [ms

VSEN

G1

G2

Figure 4 The read and write circuits for the proposed emulator circui
read and write circuits for the proposed emulator circuit of memristors. (b)
the input data of the write driver, write command signal, read command s
Figure 2e, f, g, h shows the simulation results of the pro-
posed emulator circuit with four times higher frequency
of 40 kHz than that of Figure 2a, b, c, d,VIN, IIN,VC, and
the pinched hysteresis loop, respectively, with 10 kHz. A
sinusoidal voltage with 40 kHz that is applied to the
emulator circuit is shown in Figure 2e. Here the first
three peaks are for increasing VC in Figure 1; thereby,
the emulator circuit changes from RESET to SET. The
next three peaks are for decreasing the state variable; thus,
the emulator circuit can return to RESET. IIN and VC with
the sinusoidal function that is indicated in Figure 2e are
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shown in Figure 2f, g, respectively. Figure 2h shows the
voltage-current relationship of the emulator circuit. In
Figure 2h we can see three voltage-current loops at the
right and another three voltage-current loops at the left
which correspond to the three high peaks and three low
peaks in Figure 2e, respectively.
Figure 3a shows SET pulses with different amplitude

values. Here the amplitude values are increasing mono-
tonically from 0.5 to 3 V. Each SET pulse is followed by
a RESET pulse with the fixed amplitude as high as 3 V that
is shown in Figure 3b. The state variable that is changed by
SET and RESET pulses are shown in Figure 3c. Here VC

represents the amount of stored charge at C1 that controls
the voltage-controlled resistor in Figure 1 that acts as
memristor. Figure 4a shows the read and write circuits for
the proposed emulator circuit of memristors [9,10]. The
read circuit is simply composed of a current mirror and
comparator. The comparator G1 compares the sensing
voltage VSEN with the reference voltage VREF. The sensing
voltage VSEN can change according to the programmed
memristance value of the emulator circuit. If the state
variable is closer to RESET, the sensing voltage VSEN

becomes larger due to a large value of memristance.
On the contrary, the state variable is in SET, and VSEN is
smaller than VREF. Here DOUT is the output voltage of the
read circuit. G2 is the inverter for RD that is the ‘read’
command signal. TG1 and TG2 are the transmission gates
for the read operation. When RD is high, TG1 and TG2

are on. On the contrary, TG3 and TG4 are on for the
‘write’ operation that is activated by the write command
signal WR. The input data DIN drives the inverter G3. And
G3 drives the next inverter G4. The anode and cathode
of the proposed emulator circuit are driven by the two
inverters, G3 and G4, respectively. Figure 4b shows the
voltage waveforms of DIN, WR, RD, and DOUT.
Figure 5 compares the layout area of the previous

emulator circuit [4] and the proposed emulator circuit.
Because the resistor array is not used in the proposed
circuit and the analog-to-digital converter and decoder are
eliminated in this paper, the layout area of the previous
emulator circuit is estimated to be 32 times larger than the
emulator circuit proposed in this paper. The design rule
used in this layout is MagnaChip 0.35-μm technology.
Conclusions
In this paper, a CMOS circuit that could emulate memris-
tive behavior was proposed. The proposed emulator circuit
could mimic the pinched hysteresis loops of a memristor's
current-voltage relationship without using a resistor array
and complicated circuit blocks that may occupy very
large layout area. Instead of using a resistor array, other
complicated circuit blocks, etc., the proposed emulator
circuit could mimic memristive behavior using simple
voltage-controlled resistors, where the resistance can be
programmed by the stored voltage at the state variable
capacitor. Comparing the layout area between the previous
emulator circuit and the proposed one, the layout area of
the emulator circuit proposed in this paper was estimated
to be 32 times smaller than the previous emulator circuit.
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