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Large-area high-performance SERS substrates
with deep controllable sub-10-nm gap structure
fabricated by depositing Au film on the cicada
wing
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Abstract

Noble metal nanogap structure supports strong surface-enhanced Raman scattering (SERS) which can be used to
detect single molecules. However, the lack of reproducible fabrication techniques with nanometer-level control
over the gap size has limited practical applications. In this letter, by depositing the Au film onto the cicada wing,
we engineer the ordered array of nanopillar structures on the wing to form large-area high-performance SERS
substrates. Through the control of the thickness of the Au film deposited onto the cicada wing, the gap sizes
between neighboring nanopillars are fine defined. SERS substrates with sub-10-nm gap sizes are obtained, which
have the highest average Raman enhancement factor (EF) larger than 2 × 108, about 40 times as large as that of
commercial Klarite® substrates. The cicada wings used as templates are natural and environment-friendly. The
depositing method is low cost and high throughput so that our large-area high-performance SERS substrates have
great advantage for chemical/biological sensing applications.
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Background
Surface-enhanced Raman scattering (SERS), as a powerful
spectroscopy technique that can provide non-destructive
and ultra-sensitive characterization down to a single mo-
lecular level [1,2], is currently receiving a great deal of at-
tention from researchers. Lots of works focus on the
SERS mechanism and the fabrication of high-performance
SERS-active substrates for application [3-44]. High-
performance SERS substrates mean that the substrates
should be uniform, reproducible, and ultra-sensitive.
Recently, the nanogap structure becomes attractive to

researchers because it can provide enormous Raman
enhancement due to the existence of enormous electro-
magnetic enhancement in the gap of metal nanostruc-
ture, which is called ‘hot spot’ [3-16]. And the surface
plasmonic coupling between neighboring nanounits is
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believed to be the main reason for the enormous elec-
tromagnetic enhancement. Many investigations on the
mechanism of the surface plasmonic coupling and the
fabrication of the nanogap-structured SERS substrates
for practical application have been presented [3-17].
Compared to the nanoparticle substrates, the ordered
nanopillar/nanorod array substrates are more uniform
and reproducible, which make them more beneficial to
practical application and theoretical analysis. But the
uniform ordered nanopillar/nanorod array substrates
with tunable gap size are usually fabricated by electron-
beam lithography (EBL) and focused ion-beam lithog-
raphy (FIBL), which require a very high fabrication cost
[18-20]. To circumvent this difficulty, many low-cost
methods and techniques have been proposed, like self-
assembly [21,22], indentation lithography [14,20,23-27],
corroding ultra-thin layer [7], femto-second laser fabri-
cation [28-31], and so on. But to date, for the existence
of many limits of these low-cost techniques, the fabrica-
tion of the large-area low-cost high-performance SERS
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substrate, with tunable gap size, is still critical not only
for practical applications of SERS in the chemical/bio-
logical sensor, but also in understanding surface
plasmonic coupling existing inside the nanogaps.
In this letter, we provide a simple method to fabricate

large-area low-cost high-performance SERS substrates
with tunable gap size through depositing the Au film
onto the ordered nanopillars array structure on the ci-
cada wings. The fine control of the gap size is achieved
by controlling the Au film deposition thickness. The
dependence of the average enhancement factor (EF) on
the gap size is investigated. The highest average EF, 2 ×
108, is obtained when the gap size is <10 nm. This
highest average EF is about 40 times as large as that of
commercial Klarite® substrates. The large-area low-cost
high-performance SERS substrates with tunable gap size,
obtained in our work, not only are useful for improving
the fundamental understanding of SERS phenomena,
but also facilitate the use of SERS for chemical/biological
sensing applications with extremely high sensitivity. In
addition, because the cicada wings used as the templates
in our work are from nature, our SERS substrates are
environment-friendly.

Methods
Sample and substrate preparation
Many nanostructures existing in biology are evolutionary
results for the needs of adaptation and survival, which
can produce astonishing optical effects and can be used
directly. An ordered array of nanopillar structures on
the cicada wing, with a perfect anti-reflection efficiency,
has been investigated widely [45-48] and was used as the
template in this letter. The cicadas (Cryptympana atrata
Fabricius) were captured locally. Before the depositing
Figure 1 Schematic illustration of the fabrication program of the SER
wing was used directly as the template. The SEM image and schematic illu
deposited on the cicada wings to engineer the nanostructures and define
process, the cicada wings are cleaned to get rid of the
stains and restored the sticking nanopillars. Figure 1
shows the scanning electron microscope (SEM) image of
the cicada wing and schematic illustrations of the fab-
rication of the SERS substrates. A hexagonally quasi-
two-dimensional (q2D) ordered assembly of nanopillars
exists on the surface of the cicada wing. The nearest-
neighbor nanopillar distance (Λ) is an approximate
190 nm; the average height (h) of each nanopillar is
about 400 nm, and the average diameter at the pillar top
and base are about 65 and 150 nm, respectively. The
main component of the cicada wing is chitin - a high
molecular weight crystalline polymer [47]. And due to
the existing of the ordered array of nanopillars, the ci-
cada wing shows an excellent anti-reflection [46-48].
Here, the cicada wing, with a large-area uniform nano-
structure on the surface, was used as the template. As
shown in Figure 1, the Au film was deposited onto the
surface of the cicada wing with an ion beam sputter
evaporator to engineer the nanostructure. The Au film
thicknesses (d) were controlled to be 50, 100, 150, 200,
250, 300, 350, and 400 nm, respectively, and these SERS
substrates were signed with CW50, CW100, and so on
in the following discussion. The deposition process was
kept with target substrate at room temperature with a
depositing rate of 0.03 nm/s.
Figure 2a,b,c,d and Figure 2e,f,g,h show the top view

and side view SEM images of CW50, CW200, CW300,
and CW400, respectively. As shown in Figure 2, with the
increase in the deposited Au film thickness d, when d ≤
300 nm, the gap size (g) between the nearest-neighbor
nanopillars decreases, and the nanopillars tend to be-
come hexagonal nanorods. The average g of CW50 to
CW300 were measured with commercial software and
S substrates. The ordered array of nanopillar structures on the cicada
stration of the nanopillar structures are shown. The Au films were
the gap size.



Figure 2 Top-(a,b,c,d) and side-view (e,f,g,h) SEM images of SERS substrates CW50, CW200, CW300, and CW400, respectively.
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shown in Figure 3b. According to the measured results,
the average g even decreases to sub-10 nm when d is
300 nm. The average heights of the nanopillars (h) of
CW50 to CW300 were also measured, and the meas-
urement results show that the average height of the
nanopillars (h) decreases from about 400 nm to about
200 nm with the increase in d. This is reasonable be-
cause with the decrease of g, the gold atoms are easier
to fall into the bottom which leads to a faster rise of
the bottom. Additionally, the surfaces of the nanopillar
structures of CW50, CW100, and CW150 are relatively
smooth; contrarily, the surfaces of the nanopillar struc-
tures of CW200, CW250, and CW300 are relatively
rough. When d > 350 nm, i.e., the cases of CW350 and
CW400, relatively continuous layers formed on the top
of the nanopillars. The relatively continuous layers are
rugged and the nanopillars were covered up so the gs
of CW350 and CW400 cannot be measured and shown
in Figure 3b.

SERS spectra measurement and EFs calculation
To characterize the SERS performance of our substrates,
benzene thiol was used as the probe molecule. And
commercial Klarite® substrates were used as reference
samples. The Klarite® SERS substrate consists of a gold-
coated textured silicon (regular arrays of inverted pyra-
mids of 1.5-μm wide and 0.7-μm deep) mounted on a
glass microscope slide. All of the substrates (including
Klarite® substrates) were immersed in a 1 × 10−3 M solu-
tion of benzene thiol in ethanol for approximately 18 h
and were subsequently rinsed with ethanol and dried
with nitrogen to ensure that a complete self-assembled
monolayer (SAM) was formed on the substrate surface.
All the Raman spectra were recorded with a confocal
Raman spectroscopic system (model inVia, Renishaw
Hong Kong Ltd., Kowloon Bay, Hong Kong, China). The
spectrograph uses 1,200 g/mm gratings, a 785-nm laser,
and a SynchroScan type camera. The incident laser
power for different SERS substrates were not the same
because of the huge difference of the Raman sensitivity
among the substrates. The incident laser power was set
to be 0.5 mW for CW350 to CW400 and 0.1 mW for
CW50 to CW100 and Klarite® substrates 0.05 mW for
CW150 to CW200 and 0.005 mW for CW250 to
CW300. All the SERS spectra were collected using a ×
50, NA = 0.5, long working distance objective. The laser
spot size is about 2 μm. SERS spectra were recorded
with an accumulation time of 10 s and a single scan was
performed after SAM of benzene thiol formed on the
substrate surface. To get an accurate approximation of
the enhancement factors, the neat Raman spectrum of
benzene thiol was measured. For these measurements,
the power of the 785 nm laser was 1 mW, the accumula-
tion time was 10 s, the spot size was 20 μm, and the
depth of focus was 18 μm. Figure 3a shows the Raman
spectra of the benzene thiol SAM on the optimal sub-
strate (CW300; red), Klarite® substrate (green), and neat
thiophenol (black), with everything being normalized to
account for the accumulation time and laser power. The
number of molecules contributing to the Raman signal
was quoted in Figure 3a and was used for calculating
EFs. The average EFs were calculated from the equation

EF ¼ ISERS=IRamanð Þ � NRaman=NSERSð Þ;

where ISERS and IRaman represent the normalized Raman



Figure 3 Comparison of substrates and neat benzene thiol, average EFs and gap sizes, spatial mapping, and COMSOL simulations.
(a) Comparison of the SERS of substrates CW300 (red), Klarite® (green), and neat Raman spectra (black) of benzene thiol collected at 785-nm
incident. The number of molecules of benzene thiol that each measurement is probing is denoted in the figure. Inset: zoomed-in region of the
spectra showing the three primary modes located near 1,000/cm, with the 998/cm used for calculation of the SERS enhancement factor. Note
that the SERS of the Klarite® substrate and the neat spectra have been multiplied by a factor of 100 for easier direct comparison. (b) Average EFs
(black open squares) and gap sizes between neighboring nanopillars (red open rhombuses) as function of gold film thickness deposited on the
cicada wing. (c) Spatial mapping of the SERS intensity at 998/cm of SERS substrate CW300 over an area larger than 20 μm× 20 μm. The
background is the optical reflection image of substrate CW300 photographed through a microscope with a × 50 objective. (d) COMSOL
simulations of SERS enhancement (black dash) and the mean of experimental average EFs (red squares) as function of gap size between
neighboring nanopillars. All date points are normalized to the corresponding value of SERS enhancement of CW50.
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intensity of SERS spectra and neat Raman spectrum of
benzene thiol, respectively, which can be measured dir-
ectly from the Raman spectra. NSERS and NRaman repre-
sent the numbers of molecules contributing to SERS
signals and neat Raman signals of benzene thiol, respect-
ively. NRaman is defined as follows:

NRaman ¼ ρ� V � ΝΑ=MW;

where ρ = 1.073 g/mL and MW= 110.18 g/mol are the
density and molecular weight of benzene thiol and V is
the collection volume of the liquid sample monitor.
NA = Avogadro’s number. NSERS is defined as follows:

NSERS ¼ ρsurf � ΝΑ � Ssurf ;

where ρsurf is the surface coverage of benzene thiol on
which has been reported as approximately 0.544 nmol/
cm2, and Ssurf is the surface area irradiated by exciting
the laser.
To get an accurate and comparable estimation of the

average enhancement factor, the Raman mode used for
the calculation of the average EF must be selected care-
fully because the average EFs calculated from different
Raman modes have a great deviation. For comparison,
the three Raman modes associated with vibrations about
the aromatic ring are presented in the inset of Figure 3a,
and the average EFs of optimal substrate (CW300)
which are calculated based on the intensities of the
modes at 998/cm (C-H wag), 1,021/cm (C-C symmetric
stretch), and 1,071/cm (C-C asymmetric stretch) are
2 × 108, 5 × 108, and 2 × 109, respectively. However,
while the average EFs calculated were based on the neat
benzene thiol dependent on the choice of Raman mode
strongly, the relative Raman enhancement between our
SERS substrates (including the Klarite® substrate) were
found to be relatively independent on the choice of
Raman mode used for comparison, as shown in
Figure 3a. Here, the intensities of the peak found at
998/cm, with the carbon-hydrogen wagging mode
which is the furthest mode removed from the gold
surface, were used to compute the average EFs. And the
average EF of the Klarite® substrate was calculated to be
5.2 × 106, which is reasonable because the enhancement
factor for the inverted pyramid structure of Klarite®
substrates relative to a non-enhancing surface is rated
to have a lower bound of approximately 106.
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Results and discussion
The average EFs for our SERS substrates were calculated
and are presented in Figure 3b as a function of d (black
open squares). For each substrate, more than 80 spectra
were collected at various positions to ensure that a re-
producible SERS response was attained. Spatial mapping
with an area larger than 20 μm× 20 μm of the SERS in-
tensity of CW300 was shown in Figure 3c as an example.
It was certified that the relative standard deviation
(RSD) in the SERS intensities were limited to approxi-
mately 30% within a given substrate, which is similar
with the result of other groups [17]. The SERS response
at a given point on the substrate was found to be highly
reproducible, with variations in the detected response
being limited to about 7%.
According to the results shown in Figure 3b, with the

increase in d, when d ≤ 300 nm, the gap size g decreases,
and the average EF increases. The highest average EF,
2 × 108, is obtained when d = 300 nm. But when d ≥
350 nm, the average EF decreases abruptly to about 5 ×
105. This is because a relatively continuous and rugged
layer has formed on the top of the nanopillars and, con-
sequently, the high density and deep nanogaps were cov-
ered up when d ≥ 350 nm.
Additionally, as shown in Figure 3a,b, the Raman inten-

sity of the peak at 998/cm of our optimal SERS substrate
(CW300) is about 200 times as large as that of the Klarite®
substrate. But the calculated highest average EF of
CW300, 2 × 108, is only about 40 times as large as the
average EF of the Klarite® substrate, 5.2 × 106. This is be-
cause the surface area (Ssurf) of CW300 is about four
times as large as the Ssurf of the Klarite® substrate. The
large surface area of our substrate is induced by the high
density and large depth of the nanogap structure. In other
words, the high density and large depth of the nanogap
structure of our substrate provide dense strong ‘hot spots’
and an enormous Raman intensity but yields a relative
small average EF. As shown in Figure 3a, an obvious back-
ground signal is found in the Raman spectrum of the
Klarite® substrate, which almost cannot be found in the
Raman spectrum of our substrate. Manifestly, our high
density and deep nanogap structure substrates have an ad-
vantage for application.
To gain a better understanding on the role of plasmonic

coupling in the SERS effect, COMSOL calculations of the
predicted SERS enhancement with the parameters esti-
mated according to the SEM images were carried out and
presented as a function of gap size in Figure 3d. All of the
simulation values presented in Figure 3d are normalized to
the calculated SERS enhancement (E4) for the structure of
CW50. And the measured average EFs shown in Figure 3d
are also normalized to the measured average EFs of the
SERS substrate CW50. Our experimental results agree
with the simulations, both showing a dramatic increase in
the average EFs with the decrease in the gap size, which is
believed to be caused by the plasmonic coupling from the
neighboring nanopillars. As shown, the experimental aver-
age EFs are larger than the simulations, which is because
of the neglect of the roughness of the nanopillar surface in
the simulating.

Conclusions
In conclusion, through a simple low-cost and high-output
method-depositing Au film, we engineer the ordered array
of nanopillars structure on the wing to form large-area
high-performance SERS substrate. By this method, the
gap size between the nanopillars is fine defined and SERS
substrates with sub-10-nm gap size are obtained, which
have the highest average EF of about 2 × 108. The dra-
matic increase in the average EFs with the decrease in the
gap size induced by the plasmonic coupling from the
neighboring nanopillars is certified. In this work, the nat-
ural and low-cost cicada wings were used as the templates
directly; so, our SERS substrates are environment-friendly.
Our low-cost environment-friendly large-area uniform re-
producible and ultra-sensitive SERS substrates have huge
advantages for applications and theoretical studies.
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