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Abstract

The time behavior of DSN (displaced squeezed number state) for a two-dimensional electronic circuit composed of
nanoscale elements is investigated using unitary transformation approach. The original Hamiltonian of the system is
somewhat complicated. However, through unitary transformation, the Hamiltonian became very simple enough that
we can easily treat it. By executing inverse transformation for the wave function obtained in the transformed system,
we derived the exact wave function associated to the DSN in the original system. The time evolution of the DSN is
described in detail, and its corresponding probability density is illustrated. We confirmed that the probability density
oscillates with time like that of a classical state. There are two factors that drive the probability density to oscillate: One
is the initial amplitude of complementary functions, and the other is the external power source. The oscillation
associated with the initial amplitude gradually disappears with time due to the dissipation raised by resistances of the
system. These analyses exactly coincide with those obtained from classical state. The characteristics of quantum
fluctuations and uncertainty relations for charges and currents are also addressed.

Keywords: Displaced squeezed number states, Electronic circuits, Nanoscale physics, Unitary transformation,
Fluctuations of charges and currents

Background
The technical range of nanoscale is 1 to 999 nm, but peo-
ple often refer to nanosize when an element is smaller
than about 100 nm, where quantum effects are domi-
nant instead of classical ones. Nanophysics and nano-
electronics have been rapidly developed thanks to the
advancement of relevant technologies such as crystal
growth and lithography, which facilitate sophisticated
experiments for nanosystems [1,2]. A recent conspicu-
ous trend in the community of electronic device is that
the integrated circuits and components are miniaturized
towards atomic-scale dimensions [2]. We can confirm
from many experiments and theories associated with
nanoscale elements that the quantum effects become
prominent when the transport dimension reaches a crit-
ical value which is the Fermi wavelength, while at the
same situation, the classical theory for the motion of
charges and currents is invalid. Not only quantum dot
and quantum wire but also the quantum characteristics
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of electronic circuits involving nanoscale elements are
important as a supporting theory for nanometer elec-
tronic technology and quantum information technology.
For this reason, quantum effects in electronic circuits with
nanoscale elements have been widely studied in recent
years.
The simple quantum model of a lossless inductor-

capacitor (LC) circuit have been suggested firstly by
Louisell [3]. Zhang et al. investigated the quantum prop-
erties of two-dimensional electronic circuits which have
no power source [4]. The quantum behavior of charges
and currents for an LC circuit [5] and a resistor-inductor-
capacitor (RLC) linear circuit [3] driven by a power source
have been studied by several researchers. If a circuit con-
tains resistance, the electronic energy of the system dis-
sipates with time. In this case, the system is described
by a time-dependent Hamiltonian. Another example
of the systems described by time-dependent Hamilto-
nian is electronic circuits driven by time-varying po-
wer sources. The quantum problem of time-dependent
Hamiltonian systems attracted great concern in the
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community of theoretical physics and chemistry for sev-
eral decades [4,6,7].
The study of electronic characteristics of charge carriers

in nanoelectronic circuits is basically pertained to a phys-
ical problem. There are plentiful reports associated with
the physical properties of miniaturized two-loop (or two-
dimensional) circuits [8-12] and more high multi-loop
circuits [13-16] including their diverse variants. Various
applications which use two-loop circuits include a switch-
level resistor-capacitor (RC) model of an n-transistor (see
Figure three of [8]), a design of a prototype of current-
mode leapfrog ladder filters (Sect. 3 of [9]), and a port-
Hamiltonian system [10], whereas higher loop circuits can
be used as a transmission line model for multiwall car-
bon nanotube [13] and a filter circuit for electronic signals
(Sect. 5 of [15]).
In this paper, we derive quantum solutions of a two-

dimensional circuit coupled via RL and investigate its
displaced squeezed number state (DSN) [17]. We sup-
pose that the system is composed of nanoscale elements
and driven by a time-varying power source. The uni-
tary transformation method which is very useful when
treating time-dependent Hamiltonian systems in cases
like this will be used. We can obtain the wave func-
tions of DSN by first applying the squeezing operator
in those of the number state and then applying the
unitary displacement operator. Under displaced quan-
tum states of circuit electrodynamics, conducting charges
(or currents) exhibit collective classical-like oscillation.
The fluctuations and uncertainty relations for charges
and currents will be evaluated in the DSN without
approximation.
Displaced squeezed number states, which are the main

topic in this work, belong to nonclassical states that
have been objects of many investigations. The statistical
properties of these states exhibit several pure quantum
effects which have no classical analogues, including the
interference in the phase space [18], the revival/collapse
phenomenon [19], and sub-Poissonian statistics [20]. The
position representation of these states with overall phases
is derived by Moller et al. for the simple harmonic oscil-
lator by employing geometric operations in phase space
[17]. The effects of quantum interference between two
distinct DSNs prepared to be out of phase with respect
to each other are investigated by Faisal et. al., discussing
various nonclassical properties in connection with quan-
tum number distribution, purity, quadrature squeezing,
W-function, etc. [21].

Methods and results
Simplification via unitary transformation
Let us consider two loops of RLC circuit, whose ele-
ments are nanosized, that are coupled with each other

Figure 1 Electronic circuit. This is the diagram of a two-dimensional
electronic circuit composed of nanoscale elements.

via inductance and resistance as shown in Figure 1.
Using Kirchhoff’s law, we obtain the classical equations of
motion for charges of the system [4]:

L1
d2q1
dt2

+ R1
dq1
dt

+ q1
C1

+ L0
(
d2q1
dt2

− d2q2
dt2

)

+ R0

(
dq1
dt

− dq2
dt

)
= E(t),

(1)

L2
d2q2
dt2

+ R2
dq2
dt

+ q2
C2

− L0
(
d2q1
dt2

− d2q2
dt2

)

− R0

(
dq1
dt

− dq2
dt

)
= 0,

(2)

where qj (j = 1, 2; hereafter, this convention will be
used for all j) are charges stored in the capacitances Cj,
respectively, and E(t) is an arbitrary time-varying volt-
age source connected in loop 1. If we consider not only
the existence of E(t) but also the mixed appearance of
q1 and q2 in these two equations, it may be not an easy
task to treat the system directly. If the scale of resis-
tances are sufficiently large, the system is described by
an overdamped harmonic oscillator, whereas the system
becomes an underdamped harmonic oscillator in the case
of small resistances. In this paper, we consider only the
underdamped case.
For convenience, we suppose that R0/L0 = R1/L1 =

R2/L2 ≡ β . Then, the classical Hamiltonian of the system
can be written as

H = e−βt
(

p21
2L1

+ p22
2L2

− 1
2
(k1p1 − k2p2)2

)

+ eβt
(

q21
2C1

+ q22
2C2

− E(t)q1

)
,

(3)

where pj are canonical currents of the system, and
kj = (1/Lj)(1/L0 + 1/L1 + 1/L2)−1/2. From Hamilton’s
equations, we can easily see that pj are given by

p1 = eβt[ (L0 + L1)q̇1 − L0q̇2] , (4)
p2 = eβt[ (L0 + L2)q̇2 − L0q̇1] . (5)
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If we replace classical variables qj and pj in Equation 3
with their corresponding operators, q̂j and p̂j, the classical
Hamiltonian becomes quantum Hamiltonian:

Ĥ = e−βt
(

p̂21
2L1

+ p̂22
2L2

− 1
2
(k1p̂1 − k2p̂2)2

)

+ eβt
(

q̂21
2C1

+ q̂22
2C2

− E(t)q̂1

)
,

(6)

where p̂j = −i�∂/∂qj. Now, we are going to transform
Ĥ into a simple form using the unitary transformation
method, developed in [6] for a two-loop LC circuit, in
order to simplify the problem. Let us first introduce a
unitary operator

ÛA = ÛA1 ÛA2, (7)

where

ÛA1 = exp
{[

i
�
ln
(
C2
C1

)1/8
+ i

β

4�
t
]

(p̂1q̂1 + q̂1p̂1)
}

× exp
{[

i
�
ln
(
C1
C2

)1/8
+ i

β

4�
t
]

(p̂2q̂2 + q̂2p̂2)
}
,

(8)

ÛA2 = exp
[
− iϕ

�
(p̂1q̂2 − p̂2q̂1)

]
, (9)

with

ϕ= 1
2
tan−1

⎧⎨
⎩2k1k2

[√
C2
C1

(
k21− 1

L1

)
−
√
C1
C2

(
k22− 1

L2

)]−1⎫⎬
⎭ .

(10)

Using Equation 7, we can transform the Hamiltonian
such that

ĤA = Û−1
A ĤÛA − i�Û−1

A
∂ÛA
∂t

. (11)

A straightforward algebra after inserting Equation 6 into
the above equation gives

ĤA(q̂1, p̂1, q̂2, p̂2, t) = ĤA1(q̂1, p̂1, t) + ĤA2(q̂2, p̂2, t),
(12)

where

ĤAj(q̂j, p̂j, t) = p̂2j
2μj

+ β

4
(q̂jp̂j + p̂jq̂j) + 1

2
√
C1C2

q̂2j

− q̂jE(t)
(
C1
C2

)1/4
eβt/2 cos

(
ϕ − π

2
δj,2
)
,

(13)

with

μ1 =
[√

C2
C1

(
1
L1

− k21
)
cos2 ϕ +

√
C1
C2

(
1
L2

− k22
)
sin2 ϕ

−k1k2 sin (2ϕ)

]−1

,

(14)

μ2 =
[√

C2
C1

(
1
L1

− k21
)
sin2 ϕ +

√
C1
C2

(
1
L2

− k22
)
cos2 ϕ

+k1k2 sin (2ϕ)

]−1

.

(15)

One can see from Equation 13 that the coupled term
involving q̂1q̂2 in the original Hamiltonian is decoupled
through this transformation. However, the Hamiltonian
still contains linear terms that are expressed in terms of
q̂jE(t), which are hard to handle when developing a quan-
tum theory of the system. To remove these terms, we
introduce another unitary operator of the form

ÛB = ÛB1 ÛB2, (16)

ÛB1 = exp
[
i
�
[ p1p(t) q̂1 + p2p(t) q̂2]

]

× exp
[
− i
�
[ q1p(t) p̂1 + q2p(t) p̂2]

]
,

(17)

ÛB2 = exp
[
− iβ
4�

(μ1q̂21 + μ2q̂22)
]
, (18)

where qjp(t) and pjp(t) are classical particular solutions
of the firstly transformed system described by ĤA in the
charge and the current spaces, respectively. From basic
Hamiltonian dynamics with the use of Equation 12, we see
that qjp(t) and pjp(t) satisfy the time-dependent classical
equations that are given by

q̈jp(t) + ω2
j qjp(t) − E(t)

μj

4

√
C1
C2

eβt/2 cos
(
ϕ − π

2
δj,2
)

= 0, (19)

p̈jp(t) + ω2
j pjp(t) − Ė(t) 4

√
C1
C2

eβt/2 cos
(
ϕ − π

2
δj,2
)

= 0, (20)

where

ωj =
(

1
μj

√
C1C2

− β2

4

)1/2

. (21)

Then, the second transformation yields

ĤB(q̂1, p̂1, q̂2, p̂2, t) = Û−1
B ĤAÛB − i�Û−1

B
∂ÛB
∂t

= ĤB1(q̂1, p̂1, t) + ĤB2(q̂2, p̂2, t),
(22)
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where

ĤBj(q̂j, p̂j, t) = p̂2j
2μj

+ 1
2
μjω

2
j q̂

2
j + Ljp(t), (23)

with

Ljp(t) = 1
2
μjq̇2jp(t) − 1

2
√
C1C2

q2jp(t). (24)

The finally transformed Hamiltonian, Equation 22, is
very simple and no longer involves linear terms that con-
tain E(t). If we neglect Ljp(t), this is exactly the same
as that of the two-dimensional simple harmonic oscilla-
tor of frequencies ωj. We will use this formula in order
to develop DSN, which is a typical nonclassical quantum
state.
If we regard that the transformed Hamiltonian is very

simple, the quantum dynamics in the transformed sys-
temmay be easily developed. Let us write the Schrödinger
equations for elements of the transformed Hamiltonian as

i�
∂ψB

nj(qj, t)
∂t

= ĤBjψ
B
nj(qj, t), (25)

whereψB
nj(qj, t) represent number state wave functions for

each component of the decoupled systems described by
ĤBj.
By means of the usual annihilation operator,

âj =
√

μjωj

2�
q̂j + ip̂j√

2�μjωj
, (26)

and the creation operator â†j defined as the Hermitian
adjoint of âj, one can identify the initial wave functions of
the transformed system in number state such that

ψB
n1,n2(q1, q2, 0) = ψB

n1(q1, 0)ψ
B
n2(q2, 0), (27)

where

ψB
nj(qj, 0) =

(μjωj

�π

)1/4 1√
2njnj!

Hnj

[(μjωj

�

)1/2
qj
]

× exp
(
−μjωj

2�
q2j
)
.

(28)

This formula of wave functions will be used in the next
section in order to derive the DSN of the system.

Displaced squeezed number state
The DSNs are defined by first squeezing the number states
and then displacing them. Like squeezed states, DSNs
exhibit nonclassical properties of the quantum field in
which the fluctuation of a certain observable can be less
than that in the vacuum state. This state is a generalized
quantum state for dynamical systems and, in fact, equiv-
alent to excited two-photon coherent states in quantum
optics. If we consider that DSNs generalize and com-
bine the features of well-known important states such

as displaced number states (DNs) [22], squeezed number
states [23], and two-photon coherent states (non-excited)
[24], the study of DSNs may be very interesting. Differ-
ent aspects of these states, including quantal statistics,
entropy, entanglement, and position space representation
with the correct overall phase, have been investigated in
[17,23,25].
To obtain the DSN in the original system, we first

derive the DSN in the transformed system according to its
exact definition. Then, we will transform it inversely into
that of the original system. The squeeze operator in the
transformed system is given by

Ŝj(zj) = exp
[
−1
2
(z∗j â2j − zjâ†2j )

]
, (29)

where

zj = rjeiφj . (30)

Using the Baker-Campbell-Hausdorff relation that is
given by [26]

exp
{

1
2�

[ aq̂2 + ic(q̂p̂ + p̂q̂) − bp̂2]
}

= 1√
cosh θ − c

θ
sinh θ

× exp
[

a
2θ�

sinh θ
(
cosh θ − c

θ
sinh θ

)−1
q̂2
]

× exp
[
− i
�
ln
(
cosh θ − c

θ
sinh θ

)
q̂p̂
]

× exp
[
− b
2θ�

sinh θ
(
cosh θ − c

θ
sinh θ

)−1
p̂2
]
,

(31)

where θ = √
c2 − ab, the squeeze operator can be rewrit-

ten as

Ŝj(zj) = 1√
cosh rj + cosφj sinh rj

× exp
[ iμjωj

2�
sinφj sinh rj

cosh rj + cosφj sinh rj
q̂2j
]

× exp
[
− i
�
ln
(
cosh rj + cosφj sinh rj

)
q̂jp̂j

]

× exp
[
− i
2μjωj�

sinφj sinh rj
cosh rj + cosφj sinh rj

p̂2j
]
.

(32)

Let us express the DSN in the transformed system in the
form

ψB
s,n1,n2(q1, q2, t) = ψB

s,n1(q1, t)ψ
B
s,n2(q2, t), (33)
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whereψB
s,nj(qj, t) represent two decoupled states which are

drivable from

ψB
s,nj(qj, t) = T̂Bj(q̂j, p̂j, t)D̂j(αj)Ŝj(zj)ψB

nj(qj, 0). (34)

Here, D̂j(αj) are displacement operators in the trans-
formed system, which are given by

D̂j(αj) = exp(αjâ†j − α∗
j âj), (35)

where αj is an eigenvalue of âj at initial time. By consider-
ing Equation 26, we can confirm that

αj =
√

μjωj

2�
qjc(0) + ipjc(0)√

2�μjωj
, (36)

where qjc(t) and pjc(t) are classical solutions of the
equation of motion in charge and current spaces, respec-
tively, for the finally transformed system. If we regard
that the complementary functions [27] of the equation
of motion in the firstly transformed system are the same
as the classical solutions of the finally transformed sys-
tem, qjc(t) and pjc(t) can also be complementary functions
of the firstly transformed system. The other operators
T̂Bj(q̂j, p̂j, t) are time-displacement operators:

T̂Bj(q̂j, p̂j, t) = exp
(

− i
�

∫ t

0
ĤBj(q̂j, p̂j, t′)dt′

)
. (37)

At first, the action of squeezing operator in wave func-
tions of the initial number state gives

Ŝj(zj)ψB
nj (qj, 0) =

(μjωj

�π

)1/4 1√
2njnj!

√√√√Gnj
bj

Gaj
Hnj

[(
μjωj

�Gcj

)1/2
qj

]

× exp
(
−μjωj

2�
Gdjq2j

)
,

(38)

where

Gaj = cosh rj + eiφj sinh rj, (39)

Gbj = cosh rj + e−iφj sinh rj
cosh rj + eiφj sinh rj

, (40)

Gcj = cosh2 rj + sinh2 rj + 2 cosφj cosh rj sinh rj, (41)

Gdj = 1 − i sinφj sinh rj(cosh rj + eiφj sinh rj)
(cosh rj + cosφj sinh rj)(cosh rj + eiφj sinh rj)

. (42)

The evaluation of the other actions of the operators in
Equation 34 may be easily performed using Equation 31
and the relation [28]

exp
[
c�2

∂2

∂q2

]
h(q) = 1√

4π�2c

∫ ∞

−∞
exp

[
− (y − q)2

4c�2

]
h(y)dy,

(43)

together with the eighth formula of 7.374 in [29] (see
Appendix 1), yielding

ψB
s,nj (qj, t) = 4

√
μjωj

�π

1√
2njnj!

√
(hbjGbj)

nj

hajGaj

× Hnj

⎡
⎣√ μjωj

�h2ajhbjGcj
[ qj − qjc(t)]

⎤
⎦

× exp
{
− μjωj

2�haj

[
[Gdj cos(ωjt) + i sin(ωjt)] q2j

− 2qj
(
Gdjqjc(0) + i

pjc(0)
ωjμj

)

+q2jc(0)Gdj cos(ωjt)
]}

× exp
[
− ip2jc(0) sin(ωjt)

2μjωjhaj�
− i

qjc(0)pjc(0)
�

×
(
1
2

− i
Gdj sin(ωjt)

haj

)]

× exp
[
− i
�

∫ t

0
Ljp(t′)dt′

]
,

(44)

where

haj = cos(ωjt) + iGdj sin(ωjt), (45)

hbj = 1 − 2i sin(ωjt)
hajGcj

. (46)

Here, the time evolution of complementary functions
are

qjc(t) = qjc(0) cos(ωjt) + pjc(0)
μjωj

sin(ωjt), (47)

pjc(t) = pjc(0) cos(ωjt) − μjωjqjc(0) sin(ωjt). (48)

The transformed system reduces to a two-dimensional
undriven simple harmonic oscillator in the limit E(t) = 0.
Our result in Equation 44 is exact, and in this limit, we can
easily confirm that some errors in Equation 45 in [30] are
corrected (see Appendix 2).
The wave function associated to the DSN in the trans-

formed system will be transformed inversely to that of the
original system in order to facilitate full study in the orig-
inal system. This is our basic strategy. Thus, we evaluate
the DSN in the original system from

ψs,n,m(q1, q2, t) = ÛAÛBψB
s,n,m(q1, q2, t). (49)
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Using the unitary operators given in Equations 7 and 16,
we derive

ψs,n1,n2(q1, q2, t) = 4

√
μ1μ2ω1ω2

�2π2
1√

2n1+n2n1! n2!

√
(hb1Gb1)n1(hb2Gb2)n2

ha1Ga1ha2Ga2
eβt/2

× exp
[
i
�
eβt/2[ p1p(t) Q1 + p2p(t) Q2]

]
Hn1

[√
μ1ω1

�h2a1hb1Gc1
[ eβt/2Q1 − q1p(t) − q1c(t)]

]

× Hn2

[√
μ2ω2

�h2a2hb2Gc2
[ eβt/2Q2 − q2p(t) − q2c(t)]

]

× exp

⎧⎨
⎩−

2∑
j=1

μj

2�

[(
ωj

haj
[Gdj cos(ωjt) + i sin(ωjt)]+ iβ

2

)
[ eβt/2Qj − qjp(t)]2

]⎫⎬
⎭

× exp

⎧⎨
⎩

2∑
j=1

μjωj

2�haj

[
2[ eβt/2Qj − qjp(t)]

(
Gdjqjc(0) + i

pjc(0)
ωjμj

)
− q2jc(0)Gdj cos(ωjt)

]⎫⎬
⎭

× exp

⎧⎨
⎩−

2∑
j=1

[
ip2jc(0) sin(ωjt)
2μjωjhaj�

+ i
qjc(0)pjc(0)

�

(
1
2

− i
Gdj sin(ωjt)

haj

)]⎫⎬
⎭

× exp
[
− i
�

∫ t

0
[L1p(t′) + L2p(t′)] dt′

]
. (50)

This is the full expression of the time evolution of wave
functions for the DSN. If we let r → 0, the squeezing
effects disappear, and consequently, the system becomes
DN. Of course the above equation reduces, in this limit, to
that of the DN.
To see the time behavior of this state, we take a sinu-

soidal signal as a power source, which is represented as

E(t) = E0 cos(�t + δ). (51)

Then, the solution of Equations 19 and 20 is given by

q1p(t) = M1(t)
μ1

cosϕ
[
(β2 − 4�2 + 4ω2

1) cos(�t + δ)

+4β� sin(�t + δ)
]
,

(52)

p1p(t) = −M1(t)� cosϕ
[
(β2 − 4�2 + 4ω2

1) sin(�t + δ)

−4β� cos(�t + δ)
]
,

(53)

q2p(t) = M2(t)
μ2

sinϕ
[
(β2 − 4�2 + 4ω2

2) cos(�t + δ)

+4β� sin(�t + δ)
]
,

(54)

p2p(t) = −M2(t)� sinϕ
[
(β2 − 4�2 + 4ω2

2) sin(�t + δ)

−4β� cos(�t + δ)
]
,

(55)

where

Mj(t) = 4

√
C1
C2

4E0eβt/2
β4 + 16(�2 − ω2

j )
2 + 8β2(�2 + ω2

j )
.

(56)

The probability densities |ψs,n1,n2(q1, q2, t)|2 are plotted
in Figures 2 and 3 as a function of q1 and t under this
circumstance. As time goes by, the overall probability den-
sities gradually converge to the origin where q1 = 0 due
to the dissipation of energy caused by the existence of
resistances in the circuit. If there are no resistances in
the circuit, the probability densities no longer converge
with time. An electronic system in general loses energy
by the resistances, and the lost energy changes to thermal
energy. Actually, Figure 2 belongs to DN due to the con-
dition r1 = r2 = 0 supposed in it. The wave function
used in Figure 2a is not displaced and is consequently the
same as that of the number state. Figure 2b is distorted by
the effect of displacement. From Figure 2c,d, you can see
that the exertion of a sinusoidal power source gives addi-
tional distortion. The frequency of E(t) is relatively large
for Figure 2c whereas it is small for Figure 2d.
You can see the effects of squeezing from Figure 3.

The probability densities in the DSN are more signifi-
cantly distorted than those of the DN. We can see from
Figure 3b,c that the time behavior of probability densi-
ties is highly affected by external power source. If there
is no power source in the circuit, the displacement of
charge, specified with an initial condition, may gradually
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Figure 2 Probability density (A). This represents the probability
density |ψs,n1,n2 (q1, q2, t)|2 as a function of q1 and t. Here, we did not
take into account the squeezing effect (i.e., we let r1 = r2 = 0).
Various values we have taken are q2 = 0, n1 = n2 = 2, � = 1,
R0 = R1 = R2 = 0.1, L0 = L1 = L2 = 1, C1 = 1, C2 = 1.2,
p1c(0) = p2c(0) = 0, and δ = 0. The values of (q1c(0), q2c(0),E0,�)

are (0, 0, 0, 0) (a), (0.5, 0.5, 0, 0) (b), (0.5, 0.5, 10, 4) (c), and
(0.5, 0.5, 0.5, 0.53) (d). All values are taken dimensionlessly for
convenience: this convention will be used in all subsequent figures.

Figure 3 Probability density (B). The probability density
|ψs,n1,n2 (q1, q2, t)|2 with squeezing parameters r1 = r2 = 0.7 and
φ1 = φ2 = 1.5 is shown here as a function of q1 and t. Various values
we have taken are q2 = 0, n1 = n2 = 2, � = 1, R0 = R1 = R2 = 0.1,
L0 = L1 = L2 = 1, C1 = 1, C2 = 1.2, p1c(0) = p2c(0) = 0, and δ = 0.
The values of (q1c(0), q2c(0),E0,�) are (0, 0, 0, 0) (a), (0.5, 0.5, 10, 4)
(b), and (0.5, 0.5, 0.5, 0.53) (c).
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disappear according to its dissipation induced by resis-
tances in the circuit. This is the same as that interpreted
from the DN and exactly coincides with classical analysis
of the system.
While various means and technologies to generate

squeezed and/or displaced light are developed in the con-
text of quantum optics after the seminal work of Slusher
et al. [31] for observing squeezed light in the mid 1980s,
(displaced) squeezed number state with sufficient degree
of squeezing for charges and currents in a circuit quan-
tum electrodynamics is first realized not long ago by
Marthaler et al. [32] as far as we know. The circuit they
designed not only undergoes sufficiently low dissipation
but its potential energy also contains a positive quartic
term that leads to achieving strong squeezing. Another
method to squeeze quantum states of mechanical oscilla-
tion of charge carriers in a circuit is to use the technique
of back-action evasion [33,34] that is originally devised in
order to measure one of two arbitrary conjugate quadra-
tures with high precision beyond the standard quantum
limit.
Though it is out of the scope of this work, the super-

positions of any two DSNs may also be interesting top-
ics to study, thanks to their nonclassical features that
have no classical analogues. The quantum properties such
as quadrature squeezing, quantum number distribution,
purity, and the Mandel Q parameter for the superposition
of two DSNs out of phase with respect to each other are
studied in the literatures (see, for example, [35]).

Quantum fluctuations
Now let us see the quantum fluctuations and uncertainty
relations for charges and currents in the DSN for the orig-
inal system. It is well known that quantum energy and
any physical observables are temporarily changed due to
their quantum fluctuations. The theoretical study for the
origin and background physics of quantum fluctuations
have been performed in [36] by introducing stochastic and
microcanonical quantizations.
If we consider the method of consecutive unitary trans-

formation, the expectation value for an arbitrary operator
Ôj in the original system can be evaluated from

〈ψs,n1,n2(t)|Ôj|ψs,n1,n2(t)〉
= 〈ψB

n1,n2(0)|Ŝ†j D̂†
j T̂

†
BjÛ

†
BÛ

†
AÔjÛAÛBT̂BjD̂jŜj|ψB

n1,n2(0)〉.
(57)

Using this relation, the expectation value of charges q̂j
and currents p̂j is derived to be

〈ψs,n1,n2(t)|q̂1|ψs,n1,n2(t)〉

= 4

√
C1
C2

e−βt/2[Y1(t) cosϕ+Y2(t) sinϕ] ,
(58)

〈ψs,n1,n2(t)|q̂2|ψs,n1,n2(t)〉

= 4

√
C2
C1

e−βt/2[−Y1(t) sinϕ+Y2(t) cosϕ] ,
(59)

〈ψs,n1,n2(t)|p̂1|ψs,n1,n2(t)〉

= − 4

√
C2
C1

eβt/2[Y1(t) cosϕ + Y2(t) sinϕ] ,
(60)

〈ψs,n1,n2(t)|p̂2|ψs,n1,n2(t)〉

= 4

√
C1
C2

eβt/2[Y1(t) sinϕ − Y2(t) cosϕ] ,
(61)

where

Yj(t) =
√

�

2μjωj
(αje−iωjt + α∗

j e
iωjt) + qjp(t), (62)

Yj(t)=
√

μj�

2ωj

[
αje−iωjt(β/2+iωj)+α∗

j e
iωjt(β/2−iωj)

]
− pjp(t).

(63)

The expectation value of square of q̂j and p̂j can also be
obtained form the same method, and we listed them in
Appendix 3. In fact, Equations 58 and 59 are the same as
the classically predicted amount of charges qcl,1 and qcl,2
inC1 andC2 in the original system, respectively. If we con-
sider that αj are given by Equation 36, qcl,1 and qcl,2 can be
rewritten, after a little evaluation, in the form

qcl,1 = 4

√
C1
C2

e−βt/2{[ q1c(t) + q1p(t)] cosϕ

+[ q2c(t) + q2p(t)] sinϕ},
(64)

qcl,2 = 4

√
C2
C1

e−βt/2{[ q2c(t) + q2p(t)] cosϕ

−[ q1c(t) + q1p(t)] sinϕ}.
(65)

We illustrated qcl,1 and qcl,2 in Figure 4 as a function of
time. To understand the time behavior of these quantities,
it may be worth to recall that complementary functions,
qjc(t), and particular solutions, qjp(t), are not associated
to the original system but to the firstly transformed sys-
tem. We can also easily confirm from similar evaluation
that the time behavior of canonical conjugate currents pcl,j
are represented in terms of qjc(t), pjc(t), and pjp(t) (see
Appendix 4).
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Figure 4 Classically predicted amount of charges in capacitors.
This illustration represents the time behavior of qcl,1 (thick solid line)
and qcl,2 (dashed line) where R0 = R1 = R2 = 0.1, L0 = L1 = L2 = 1,
C1 = 1, C2 = 1.2, q1c(0) = q2c(0) = 0.5, p1c(0) = p2c(0) = 0, and
δ = 0. The values of (E0,�) are (0, 0) (a), (10, 4) (b), and (0.5, 0.53) (c).

The definition of quantum fluctuations for any quantum
operator Ôj in the DSN is given by

(Ôj)s =
[
〈ψs,n1,n2(t)|Ô2

j |ψs,n1,n2(t)〉

−(〈ψs,n1,n2(t)|Ôj|ψs,n1,n2(t)〉)2
]1/2

.
(66)

Using this, we obtain the fluctuations of charges and
currents as

(q̂1)s =
√
�

2
4

√
C1
C2

e−βt/2
[
(2n1+1)

F1(t)
μ1ω1

cos2 ϕ

+ (2n2+1)
F2(t)
μ2ω2

sin2 ϕ

]1/2
,

(67)

(q̂2)s=
√
�

2
4

√
C2
C1

e−βt/2
[
(2n1+1)

F1(t)
μ1ω1

sin2 ϕ

+ (2n2 + 1)
F2(t)
μ2ω2

cos2 ϕ

]1/2
,

(68)

(p̂1)s=
√
�

2
4

√
C2
C1

eβt/2
[
(2n1+1)

μ1F1(t)
ω1

cos2 ϕ

+ (2n2+ 1)
μ2F2(t)

ω2
sin2 ϕ

]1/2
,

(69)

(p̂2)s=
√
�

2
4

√
C1
C2

eβt/2
[
(2n1+1)

μ1F1(t)
ω1

sin2 ϕ

+ (2n2+1)
μ2F2(t)

ω2
cos2 ϕ

]1/2
.

(70)

As we have seen before, the expectation values asso-
ciated to charges and currents are represented in terms
of complementary functions, qjc(t) and pjc(t), and partic-
ular solutions qjp(t) and pjp(t). The amplitude of com-
plementary functions is determined from the strength of
displacements, whereas the particular solutions are deter-
mined by the power source E(t) (see Equations 19 and 20).
However, all of the fluctuations do not involve such solu-
tions. This means that the displacement and the electric
power source do not affect to the fluctuations of charges
and currents.
The uncertainty products (q̂j)s(p̂j)s between charges

and their conjugate currents can be easily identified by
means of Equations 67 to 70. For the case of the DN that
are given from the limit r1 = r2 → 0, we have F1 = F2 = 0
and Fj = ω2

j + β2/4. Then, the uncertainty products
become

(q̂1)c(p̂1)c = �

2

{(
1 + β2

4ω2
1

)
(2n1 + 1)2 cos4 ϕ

+
(
1 + β2

4ω2
2

)
(2n2 + 1)2 sin4 ϕ

+
[

μ1ω1
μ2ω2

+ μ2ω2
μ1ω1

+ β2

4ω1ω2

(
μ2
μ1

+ μ1
μ2

)]

× (2n1 + 1)(2n2 + 1)
4

sin2 (2ϕ)

}1/2

,

(71)
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(q̂2)c(p̂2)c = �

2

{(
1 + β2

4ω2
1

)
(2n1 + 1)2 sin4 ϕ

+
(
1 + β2

4ω2
2

)
(2n2 + 1)2 cos4 ϕ

+
[

μ1ω1
μ2ω2

+ μ2ω2
μ1ω1

+ β2

4ω1ω2

(
μ2
μ1

+ μ1
μ2

)]

× (2n1 + 1)(2n2 + 1)
4

sin2 (2ϕ)

}1/2

.

(72)

These are the same as the uncertainty products in the
number states and are always larger than �/2, preserv-
ing the uncertainty principle. Thus, we can conclude
that the uncertainty products in the DN are the same
as those of the ordinary number states. Evidently, the
uncertainty principle is inherent in quantum mechani-
cal context described by canonical variables. The results,
Equations 71 and 72 with n1 = n2 = 0, are exactly the
same as Equations 29 and 30 of [4], respectively. More-
over, for R1 = R2 = R3 → 0 (i.e., β → 0), the above
two equations reduce to Equations 52 and 53 in [6], which
are evaluated in ordinary number state. Hence, this work
includes all the results of both [4] (no power source) and
[6] (no resistances) as special cases. The fluctuations and
uncertainty product in the DN and in the DSN are plotted
in Figure 5. We can adjust the uncertainty (or fluctuation)
of a quadrature to be small at the expense of broadening
that of another quadrature, or vice versa. The uncertainty
(q̂1)s in the case of this figure is larger than (q̂1)c, while
(p̂1)s is smaller than (p̂1)c due to the squeezing effect.
Therefore, it is relatively difficult for us to know the pre-
cise value of charge q1, while we can find out the conjugate
current p1 more precisely. However, the relevant uncer-
tainty product in the DSN is nearly unaltered from that in
the DN.

Conclusions
In summary, the time evolution of the DSN for
the two-dimensional electronic circuit composed of
nanoscale elements and driven by a power source is
investigated using unitary transformation method. Two
steps of the unitary transformation are executed: We
removed the cross term involving p̂1p̂2 in the orig-
inal Hamiltonian from the first step, and the linear
terms represented in terms of q̂jE(t) in the firstly trans-
formed Hamiltonian are eliminated by second unitary
transformation.
We can see from Equation 6 that the original Hamilto-

nian is time-dependent. When treating a time-dependent
Hamiltonian system dynamically, one usually employs
classical solutions of the equation of motion for a given

Figure 5 Fluctuations. This inset shows fluctuations (q̂1)c (dashed
line) and (q̂1)s (thick solid line) (a), and (p̂1)c (dashed line) and
(p̂1)s (thick solid line) (b), and uncertainty product (q̂1)c(p̂1)c
(dashed line) and (q̂1)s(p̂1)s (thick solid line) (c) as a function of t
where n1 = n2 = 0, � = 1, R0 = R1 = R2 = 0.1, L0 = L1 = L2 = 1,
C1 = 1, and C2 = 1.2. The values of squeezing parameters for the
DSN are r1 = 0.1, r2 = 0.3, φ1 = 1.2, and φ2 = 0.6.

system (or for a system similar to a given system) [6,7]. We
also introduced such classical solutions in Equations 19
to 20 and in Equations 47 to 48. Among them, partic-
ular solutions qjp and pjp are important in developing
quantum theory of the system involving external power
source since they are crucial factors that lead the trans-
formed Hamiltonian to be simple so that we can easily
treat it.
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Since the transformed system is just the same as
the one that consists of two independent simple har-
monic oscillators, provided that we can neglect the trivial
terms Ljp(t) in the transformed Hamiltonian, we eas-
ily identified the complete quantum solutions in the
DSN in the transformed system. We also obtained the
wave functions of the DSN in the original system via
the technique of inverse transformation, as shown in
Equation 50. If we regard the fact that the probability
does not reflect the phase of a wave function, the over-
all phase of these states is relatively unimportant for
many cases. However, in some applications such as the
computation of expectation values using generating or
characteristic functions given in [17], the exact knowl-
edge of overall phase is crucial. For r1 = r2 = 0,
the wave function in the DSN exactly reduces to that of
the DN.
We analyzed the probability densities in the DN and

in the DSN from Figures 2 and 3, respectively, with the
choice of sinusoidal signal source. The probability den-
sities in the DN given in Figure 2b,c,d oscillate with
time. Moreover, their time behaviors are more or less dis-
torted. The probability density, however, does not oscillate
when there are no displacement and no signal of power
source (see Figure 2a). The probability densities in the
DSN are distorted much more significantly than those of
the DN.
The time behavior of probability densities of quantum

states, both the DN and the DSN, is highly affected by
external driving power source. When there is no external
power source(E(t)=0), the displacement of charges, spec-
ified with a certain initial condition, gradually disappears
as time goes by like a classical state.
The fluctuations and uncertainty products of charges

and currents are derived in the DSN, and it is shown that
their value is independent of the size of the particular
solutions qjp(t) and pjp(t). From this, together with the
fact that qjp(t) and pjp(t) are determined by the charac-
teristics of E(t), it is clear that the electric power source
does not affect on the fluctuation of canonical variables. If
we ignore the time dependence of Fj(t) and Fj(t), (q̂j)s
decrease exponentially with time, whereas (p̂j)s increase
exponentially.
From Equations 64 and 65, we can see that the time

behavior of qj is determined by two factors: One is dis-
placement and the other is the signal of power source.
For better understanding of this, recall that the ampli-
tude of complementary functions gives displacement of
the system, and the particular solutions are closely related
to external driving force (i.e., in this case, the power
source).
In this paper, we did not consider thermal effects for

the system. The thermal effects, as well as dissipation,
may be worth to be considered in the studies of quantum

fluctuations of electronic circuits with nanosize elements
because the practical circuits are always working in ther-
mal states with the presence of damping. It may therefore
be a good theme to investigate DSNs with thermalization
as a next task, and we plan to investigate it in the near
future.

Appendix 1
The eighth formula of 7.374 in [29]

∫ ∞

−∞
e−(x−y)2Hn(ax)dx = π1/2(1 − a2)n/2Hn

(
ay

(1 − a2)1/2

)
.

(73)

Appendix 2
Correction of Equation 45 of [30]
The second line of Equation 45 of [30] needs to be
corrected as

exp
(

· · · + x
(x0F2 + ip0) cos t

B
− · · ·

)

−→ exp
(

· · · + x
x0F2 + ip0

B
− · · ·

)
.

(74)

Besides, among various functions that appeared in
Equation 45 of [30],F3 (Equation 23) and A (Equation 46)
should be altered as

F3 = cosh r + e−iφ sinφ sinh r
cosh r + eiφ sinφ sinh r

−→F3 = cosh r + e−iφ sinh r
cosh r + eiφ sinh r

,

(75)

A =
(
1 − 2i sin t

F2
4B

)
B − 2i sin t/F2

4
B

−→A = 1 − 2i sin t
F2
4B

.

(76)

For the convenience of comparison, we provide a list of
correspondences between our notations and the notations
used in [30]:

Gaj ↔ F1, Gbj ↔ F3, Gcj ↔ (F4)
2,

Gdj ↔ F2, haj ↔ B, hbj ↔ A.
(77)
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Appendix 3
Expectation value of q̂2j and p̂2j
According to the rule, Equation 57, for evaluating expec-
tation values, we also have the expectation value of square
of charges and currents as

〈ψs,n1,n2(t)|q̂21|ψs,n1,n2(t)〉 =
√
C1
C2

e−βt
[(

�

2μ1ω1
(2n1 + 1)F1(t) + Y 2

1 (t)
)
cos2 ϕ

+
(

�

2μ2ω2
(2n2 + 1)F2(t) + Y 2

2 (t)
)
sin2 ϕ + Y1(t)Y2(t) sin(2ϕ)

]
, (78)

〈ψs,n1,n2(t)|q̂22|ψs,n1,n2(t)〉 =
√
C2
C1

e−βt
[(

�

2μ1ω1
(2n1 + 1)F1(t) + Y 2

1 (t)
)
sin2 ϕ

+
(

�

2μ2ω2
(2n2 + 1)F2(t) + Y 2

2 (t)
)
cos2 ϕ − Y1(t)Y2(t) sin(2ϕ)

]
, (79)

〈ψs,n1,n2(t)|p̂21|ψs,n1,n2(t)〉 =
√
C2
C1

eβt
[(

μ1�

2ω1
(2n1 + 1)F1(t) + Y2

1 (t)
)
cos2 ϕ

+
(

μ2�

2ω2
(2n2 + 1)F2(t) + Y2

2 (t)
)
sin2 ϕ + Y1(t)Y2(t) sin(2ϕ)

]
, (80)

〈ψs,n1,n2(t)|p̂22|ψs,n1,n2(t)〉 =
√
C1
C2

eβt
[(

μ1�

2ω1
(2n1 + 1)F1(t) + Y2

1 (t)
)
sin2 ϕ

+
(

μ2�

2ω2
(2n2 + 1)F2(t) + Y2

2 (t)
)
cos2 ϕ − Y1(t)Y2(t) sin(2ϕ)

]
, (81)

where
Fj(t) = cosh(2rj) + sinh(2rj) cos(φj − 2ωjt), (82)

Fj(t) = (β2/4 + ω2
j ) cosh(2rj)+[ (β2/4 − ω2

j ) cos(φj − 2ωjt)

−βωj sin(φj − 2ωjt)] sinh(2rj). (83)

Appendix 4
Classical currents
Through the same vein as that of the calculation of qcl,1
and qcl,2 given in Equations 64 and 65, we can evalu-
ate classical currents pcl,1 and pcl,2 from their quantum
expectation value given in Equations 60 and 61. Thus, we
have

pcl,1 = 4

√
C2
C1

eβt/2{[ p1c(t) − μ1βq1c(t)/2 + p1p(t)] cosϕ

+[ p2c(t) − μ2βq2c(t)/2 + p2p(t)] sinϕ}, (84)

pcl,2 = 4

√
C1
C2

eβt/2{[ p2c(t) − μ2βq2c(t)/2 + p2p(t)] cosϕ

−[ p1c(t) − μ1βq1c(t)/2 + p1p(t)] sinϕ}. (85)

Abbreviations
DN: displaced number state; DSN: displaced squeezed number state.
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