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Abstract

The nanomechanical properties of BiFeO3 (BFO) thin films are subjected to nanoindentation evaluation. BFO thin
films are grown on the Pt/Ti/SiO2/Si substrates by using radio frequency magnetron sputtering with various
deposition temperatures. The structure was analyzed by X-ray diffraction, and the results confirmed the presence of
BFO phases. Atomic force microscopy revealed that the average film surface roughness increased with increasing of
the deposition temperature. A Berkovich nanoindenter operated with the continuous contact stiffness
measurement option indicated that the hardness decreases from 10.6 to 6.8 GPa for films deposited at 350°C and
450°C, respectively. In contrast, Young's modulus for the former is 170.8 GPa as compared to a value of 131.4 GPa
for the latter. The relationship between the hardness and film grain size appears to follow closely with the
Hall–Petch equation.
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Background
Multiferroic materials exhibit some unique characteristics
with the co-existence of at least two kinds of long-range
ordering among ferroelectricity (or antiferroelectricity),
ferromagnetism (or antiferromagnetism), and ferro-
elasticity. Single-phase compounds in which both ferro-
magnetism and ferroelectricity arise independently and
may couple to each other to give rise to magneto-electric
interactions are ideal materials for novel functional device
applications but are unfortunately rare in nature [1].
BiFeO3 (BFO) is one of the most important multiferroic
materials so far discovered, which has a ferroelectric Curie
temperature of 1,103 K [2,3] and an antiferromagnetic
Néel temperature of 643 K [4]. In addition to its interest-
ing optical properties [5], strong coupling between ferro-
electric and magnetic orders is observed in BFO at room
temperature, making it a strong candidate for realizing
room-temperature multiferroic devices [6,7]. However,
while most of the researches have been concentrated on
the abovementioned magneto-electric characteristics of
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BFO, researches on the mechanical characteristics of this
prominent functional material have been largely ignored.
In particular, since the mechanical properties of materials
are size-dependent, the properties obtained from thin
films may substantially deviate from those of the bulk ma-
terial. In view of the fact that most practical applications
of functional devices are fabricated with thin films, it is de-
sirable to carry out precise measurements of the mechan-
ical properties of BFO thin films.
Because of its high sensitivity, excellent resolution, and

easy operation, nanoindentation has been widely used
for characterizing the mechanical properties of various
nanoscale materials [8,9] and thin films [10-12]. Among
the mechanical characteristics of interest, the hardness,
Young's modulus, and the elastic/plastic deformation be-
haviors of the interested material can be readily obtained
from nanoindentation measurements. For instance, by
analyzing the load–displacement curves obtained during
the nanoindentation following the methods proposed by
Oliver and Pharr [13], the hardness and Young's modu-
lus of the test material can be easily obtained. In general,
in order to avoid the complications arising from the sub-
strate material, the contact depths of the indenter need
to be less than 10% of the film thickness to obtain
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intrinsic film properties [14]. On the other hand, it is
very difficult to obtain meaningful analytical results for
indentation depths less than 10 nm because of the
equipment limitations. Hence, for films thinner than 100
nm, it is almost impossible to obtain results without be-
ing influenced by responses from the substrate. In order
to gain some insights on the substrate influences and
obtain the intrinsic properties for films thinner than 100
nm, it is essential to monitor the mechanical properties
as a function of depth. Herein, in this study, a conti-
nuous stiffness measurement (CSM) mode [15] was
adopted to continuously monitor the hardness and
Young's modulus values of BFO films as a function of
the indentation depth. Variations in mechanical proper-
ties for BFO thin films deposited under different condi-
tions are discussed in conjunction with the crystalline
structure, grain size, and surface morphology of the re-
sultant films.

Methods
The BFO thin films investigated in this study were
deposited on Pt/Ti/SiO2/Si(100) substrates at the depos-
ition temperatures of 350°C, 400°C, and 450°C, respect-
ively. The deposition process was conducted in a radio
frequency magnetron sputtering system, and a commer-
cially available Bi1.1FeO3 pellet was used as the target.
The base pressure of the sputtering chamber was better
than 1 × 10−7 Torr. During deposition, a mixed gas of
Ar/O2 = 4:1 with a total pressure was introduced, and
the input power was maintained at 80 W. All of the
BFO thin films are about 200 nm thick. The compos-
ition of the film was identified by an energy-dispersive
X-ray analysis and double checked by X-ray fluorescence
analysis. The crystal structure of BFO thin films was an-
alyzed by X-ray diffraction (X'Pert XRD, PANalytical B.
V., Almelo, The Netherlands; CuKα, λ = 1.5406 Å). The
surface features were examined by atomic force micros-
copy (AFM; Topometrix-Accures-II, Topometrix Cor-
poration, Santa Clara, CA, USA). The root mean square
of the surface roughness, RRMS, was calculated by the
following equation [16]:

RRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

r2n

vuut ð1Þ

Here N is the number of data and rn is the surface
height of the nth datum.
Nanoindentation experiments were preformed on a

MTS Nano Indenter® XP system (MTS Nano Instru-
ments, Knoxville, TN, USA) with a three-sided pyram-
idal Berkovich indenter tip by using the CSM technique
[15]. This technique is accomplished by imposing a
small, sinusoidal varying force on top of the applied
linear force that drives the motion of the indenter. The
displacement response of the indenter at the excitation
frequency and the phase angle between the force and
displacement are measured continuously as a function of
the penetration depth. Solving for the in-phase and out-
of-phase portions of the displacement response gives rise
to the determination of the contact stiffness as a con-
tinuous function of depth. As such, the mechanical
properties changing with respect to the indentation
depth can be obtained. The nanoindentation measure-
ments were carried out as follows: First, prior to apply-
ing loading on BFO thin films, nanoindentation was
conducted on the standard fused silica sample to obtain
the reasonable range (Young's modulus of fused silica is
68~72 GPa). Then, a constant strain rate of 0.05 s−1 was
maintained during the increment of load until the in-
denter reached a depth of 60 nm into the surface. The
load was then held at the maximum value of loading for
10 s in order to avoid the creep which might signifi-
cantly affect the unloading behavior. The indenter was
then withdrawn from the surface at the same rate until
the loading has reduced to 10% of the maximum load.
Then, the indenter was completely removed from the
material. In this study, constant strain rate was chosen
in order to avoid the strain-hardening effects. At least 20
indentations were performed on each sample, and the
distance between the adjacent indents was kept at least
10 μm apart to avoid interaction.
In nanoindentation tests, the hardness is defined as

the applied indentation load divided by the projected
contact area as follows:

H ¼ Pmax

Ap
ð2Þ

where Ap is the projected contact area between the in-
denter and the sample surface at the maximum indenta-
tion load, Pmax. For a perfectly sharp Berkovich indenter,
the projected area Ap is given by Ap ¼ 24:56h2c with hc
being the true contact depth.
The elastic modulus of the sample can be calculated

based on the relationships developed by Sneddon [17]:
S ¼ 2βEr

ffiffiffiffiffiffi
Ap

p
=

ffiffiffi
π

p
. Here S is the contact stiffness of the

material, and β is a geometric constant with β = 1.00 for
the Berkovich indenter, respectively. The reduced elastic
modulus, Er, can be calculated from the following equa-
tion:

1
Er

¼ 1−v2film
Efilm

þ 1−v2i
Ei

ð3Þ

Here v is Poisson's ratio, and the subscripts i and f de-
note the parameters for the indenter and the BFO thin
films, respectively. For the diamond indenter tip, Ei =
1,141 GPa and vi = 0.07, and vfilm = 0.25 is assumed for
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BFO thin films in this work. It is generally accepted that
the indentation depth should never exceed 30% of the
film thickness to avoid the substrate effect on hardness
and modulus measurements [18]. Our samples and test
methodology were considered as adequate based on this
concept. In addition, because of the fact that it enters as
1−v2film
� �

in the calculation of E, an error in the estima-
tion of Poisson's ratio does not produce a significant ef-
fect on the resulting value of the elastic modulus of thin
films [19].

Results and discussion
Figure 1 shows the XRD results of BFO thin films
obtained with deposition temperatures of 350°C, 400°C,
and 450°C, respectively. It is evident that the intensity
and the full width at half maximum (FWHM) of the
BFO(110) diffraction peak are both improved with the
increasing deposition temperature, indicating a tendency
of better film crystallinity and increased grain size. The
grain size, D, can be estimated according to Scherrer's
equation [20]:

D ¼ 0:9λ
B cosθ

ð4Þ

where λ, B, and θ are the X-ray wavelength, the FWHM
of the BFO(110) diffraction peak, and the corresponding
Bragg's diffraction angle, respectively. The estimated
Figure 1 XRD patterns of BFO thin films deposited at various
deposition temperatures. (a) 350°C, (b) 400°C, and (c) 450°C.
grain sizes for BFO thin films deposited at 350°C, 400°C,
and 450°C are 24.5, 30.6, and 51.2 nm, respectively. As
can be seen below, consistent results were obtained from
the AFM examinations.
As shown in Figure 2, the AFM observations reveal

that the RRMS values for BFO thin films deposited at
350°C, 400°C, and 450°C are 6.5, 9.4, and 14.8 nm, re-
spectively. Moreover, as shown in Figure 2a,b,c, the BFO
thin films all exhibit similar dense, homogeneous micro-
structures, albeit that the grain size appears to increase
with increasing deposition temperature. The average
grain size obtained from image analysis on the AFM im-
ages indeed gave consistent results with those obtained
from XRD analyses. Namely, the microstructure of BFO
films are polycrystalline, and the grain size increases
from about 24.5 nm for thin films deposited at 350°C to
about 51.2 nm for thin films deposited at 450°C. This is
attributed to the additional thermal energy acquired
from higher deposition temperature, which may further
facilitate the coalescence of the adjacent grains (or nu-
clei) and result in larger grains during deposition
process.
Figure 3a displays the typical load–displacement (P-h)

curves for the BFO film deposited at 350°C, which re-
flects the general deformation behavior during the pene-
tration of a Berkovich indenter loaded with the CSM
mode. The P-h response obtained by nanoindentation
contains information about the elastic behavior and plas-
tic deformation and thus can be regarded as the ‘finger-
print’ of the properties of BFO thin films. The curve
appears to be smooth and regular. The absence of any
discontinuities along either the loading or unloading seg-
ment is in sharp contrast to those observed in GaN thin
films [21,22] and in single-crystal Si [23,24], indicating
that neither twinning nor pressure-induced phase trans-
formation is involved here.
Figure 3b,c presents the hardness and Young's modu-

lus versus penetration depth curves for the BFO film de-
posited at 350°C, 400°C, and 450°C, respectively. The
curves can be roughly divided into two stages, namely,
an initial increase to a maximum value followed by a
subsequent decrease to a constant value. The initial
sharp increase in hardness at a small penetration depth
is usually attributed to the transition from purely elastic
to elastic/plastic contact. Only under the condition of a
fully developed plastic zone does the mean contact pres-
sure represent the hardness. When there is no plastic
zone, or only a partially formed plastic zone, the mean
contact pressure measured according to the Oliver and
Pharr method [13] is usually smaller than the nominal
hardness. After the first stage, the hardness decreases in
a rather meandering manner, presumably involving
massive dislocation and grain boundary activities relevant
to the fine grain structure of the films. Nevertheless, the



Figure 2 AFM images of BFO thin films deposited at various
deposition temperatures. (a) 350°C, (b) 400°C, and (c)
450°C, respectively.

Figure 3 Nanoindentation results. (a) A typical load-displacement
curve for BFO thin films deposited at 350°C. (b) The hardness-
displacement curves. (c) Young's modulus-displacement curves for
BFO thin films deposited at various deposition temperatures.
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fact that it eventually reaches a constant value at a moder-
ate indentation depth indicates that a single material is be-
ing measured. The hardness values obtained at this stage,
thus, can be regarded as the intrinsic properties of the
films. The penetration depth dependence of Young's
modulus (Figure 3c) behaves similarly as that of the hard-
ness. Consequently, both mechanical parameters were de-
termined using the curves obtained from the CSM loading
scheme (Figure 3b,c) by taking the average values within
the penetration depth of 40 to 60 nm. This range of pene-
tration depth was chosen intentionally to be deep enough
for observing plastic deformation during indentation yet



Figure 4 Plot of the experimental data of hardness versus grain
size. The dashed line represents a fit to the Hall–Petch equation
with H(D) = 1.03 + 43.12 D−1/2.
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to be shallow enough to avoid the complications arising
from the effects of surface roughness [25] and substrate
[18]. Table 1 summarizes the hardness and Young's modu-
lus for various BFO thin films obtained from different de-
position methods and indentation operation modes.
It is well known that the dependence of material hard-

ness on the grain size can be described by the phenom-
enological ‘Hall-Petch’ equation [27]:

H Dð Þ ¼ H0 þ kH�PD
−1=2 ð5Þ

where H0 and kH-P are denoted as the lattice friction
stress and the Hall–Petch constant, respectively. A plot
of the hardness versus D−1/2data for BFO thin films de-
posited at various temperatures is displayed in Figure 4.
We note that although the grain size of BFO thin films
remains relatively small as compared to that of the usual
metallic materials, the data still follow pretty closely to
the Hall–Petch relation, and the so-called negative Hall–
Petch effect [28] is not observed here. The dashed line
represents the fit to the Hall–Petch equation for the ex-
perimental data, which gives

H Dð Þ ¼ 1:03þ 43:12 D−1=2 ð6Þ
which indicates a probable lattice friction stress of 1.03
GPa, and the Hall–Petch constant of 43.12 GPa nm1/2

for BFO thin films also indicates the effectiveness of the
grain boundary in hindering the dislocation movements.
Furthermore, it is evident that both the hardness and

Young's modulus of BFO thin films decrease monotonic-
ally with increasing deposition temperature. The corre-
sponding hardness values (Young's modulus) are 10.6
(170.8), 8.5 (147.6), and 6.8 (131.4) GPa for BFO thin
films deposited at 350°C, 400°C, and 450°C, respectively.
Since the higher deposition temperature leads to the lar-
ger grain size for BFO thin films, as we have discussed
previously, it is reasonable to consider that the decrease
of hardness and Young's modulus might be mainly due
to the grain size effect [29].

Conclusion
In conclusion, we have carried out the XRD, AFM, and
nanoindentation techniques to investigate the fundamental
Table 1 Hardness and Young's modulus of BFO thin films
obtained from various deposition methods

H (GPa) E (GPa)

Radio frequency magnetron sputtering-derived BFOa

350°C 6.8 131.4

400°C 8.5 147.6

450°C 10.6 170.8

Sol–gel-derived BFO [26] 2.8~3.8 26~51
aThe present work.
nanomechanical properties and their correlations with the
microstructural features of the technologically important
multiferroic BFO thin films. The XRD analysis showed that
BFO thin films were equiaxial polycrystalline in nature, al-
beit that the predominant (110) orientation and a rougher
surface morphology were gradually developed with increas-
ing deposition temperature. Nanoindentation results indi-
cated that, depending on the grain size which is intimately
related to the deposition temperature, BFO thin films have
hardness ranging from 6.8 to 10.6 GPa and Young's modu-
lus ranging from 131.4 to 170.8 GPa with the higher values
corresponding to lower deposition temperatures. In
addition, the hardness of BFO thin films appears to follow
the Hall–Petch equation rather satisfactorily, and the Hall–
Petch constant of 43.12 GPa nm1/2 suggests the effective-
ness of grain boundary in inhibiting the dislocation move-
ment in BFO thin films.
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