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Abstract

Laser ablation of selected coordination complexes can lead to the production of metal-carbon hybrid materials,
whose composition and structure can be tailored by suitably choosing the chemical composition of the irradiated
targets. This ‘laser chemistry’ approach, initially applied by our group to the synthesis of P-containing
nanostructured carbon foams (NCFs) from triphenylphosphine-based Au and Cu compounds, is broadened in this
study to the production of other metal-NCFs and P-free NCFs. Thus, our results show that P-free coordination
compounds and commercial organic precursors can act as efficient carbon source for the growth of NCFs.
Physicochemical characterization reveals that NCFs are low-density mesoporous materials with relatively low specific
surface areas and thermally stable in air up to around 600°C. Moreover, NCFs disperse well in a variety of solvents
and can be successfully chemically processed to enable their handling and provide NCF-containing biocomposite
fibers by a wet-chemical spinning process. These promising results may open new and interesting avenues toward
the use of NCFs for technological applications.
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Background
Laser technologies can be successfully utilized for the pro-
duction of carbon-nanostructured materials exhibiting fas-
cinating structural and physical properties such as carbon
nanotubes [1], carbon nanohorns [2], carbon nanofoams
[3], or shell-shaped carbon nanoparticles [4]. Our group
discovered the production of metal-nanostructured foams
(NCFs) by laser ablation of triphenylphosphine (PPh3)-
containing organometallic targets [5]. We then demon-
strated that organic ligands can act as efficient carbon
sources for the laser ablation production of carbon
nanomaterials. Metal-NCFs are three-component materials
which consist of amorphous carbon aggregates, metal
nanoparticles embedded in amorphous carbon matrices,
and graphitic nanostructures. The metal-NCF composition,
metal nanoparticle size, and dilution (i.e., metal and carbon
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content) within the carbon matrices can be tailored by
conveniently choosing the metals (Au, Cu) and ligands of
the ablated targets [6]. On the other hand, laser ablation of
PPh3 resulted in the production of metal-free NCFs
consisting of graphitic nanostructures and P-containing
amorphous carbon aggregates [6]. We report how our ver-
satile ‘laser chemistry’ approach can be extended to the
synthesis of a variety of other metal-NCFs, as well as to
metal-free, P-free NCFs, proving that the synthesis of
NCFs is not restricted to PPh3-based targets and therefore
enabling envisioning the synthesis of metal-carbon hybrids
by chemical design. Additionally, physicochemical studies
have been performed on metal-free NCFs to evaluate their
potential applications. We also show that NCFs can be eas-
ily chemically processed in the form of stable NCF disper-
sions in different solvents and NCF biocomposite fibers,
which offer promise for NCF incorporation into different
matrices and technological applications.
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Figure 1 Schematic diagram of the experimental setup used
for the laser ablation production of NCFs. A galvanometer mirror
box (A) distributes the laser radiation (B) through a flat field focal lens
and a silica window (C) onto layers of the employed organometallic
compounds (D) deposited onto a ceramic tile substrate (E) placed
inside a portable evaporation chamber (F). The synthesized soot is
mainly collected on an entangled metal wire system (G). The
produced vapors are evacuated through a nozzle (H).
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Methods
The production of carbon foams has been carried out by
Nd:YAG laser ablation of thick layers of coordination and
organic compounds in air atmosphere using the setup de-
scribed in Figure 1 and under the experimental conditions
described elsewhere [5,6]. Different metal-NCFs have
been produced by laser irradiation of dichlorobis
(triphenylphosphine)nickel(II) [NiCl2(PPh3)2], dichlorobis
(triphenylphosphine)cobalt(II) [CoCl2(PPh3)2], and [1,2-bis
(diphenylphosphino)ethane]dichloroiron(II) [FeCl2(Dppe)].
P-free metal-NCFs were produced using bis(benzonitrile)
Figure 2 SEM images showing the spongy microstructure of NCFs. SE
and phenanthrene (b).
dichloropalladium(II) [PdCl2(PhCN)2], dichloro(1,10-
phenanthroline)palladium(II) [PdCl2(Phen)], and (2,2´-bi
pyridine)dichloropalladium(II) [PdCl2(Bipy)]. Naphthalene,
phenanthrene, and 1,10-phenanthroline have been used
as precursors for the synthesis of metal-free, P-free
NCFs. All chemicals were purchased from Sigma-Aldrich
(Schnelldorf, Germany and Saint-Quentin-Fallavier, France)
and used as received.
The structure of the synthesized NCFs was imaged by

scanning electron microscopy (SEM, Hitachi S-3400N
(Hitachi, Ltd., Chiyoda-ku, Japan), including a Röntec
XFlash detector (Röntec GmbH, Berlin, Germany) for en-
ergy dispersive X-ray spectroscopy (EDS) analyses), and
transmission electron microscopy (TEM, JEOL JEM-3000F
microscope, JEOL Ltd., Akishima-shi, Japan, equipped with
an Oxford Instruments ISIS 300 X-ray microanalysis sys-
tem and a Link Pentafet detector, Oxford Instruments,
Abingdon, UK, for EDS analyses). NCF thermal stability in
air was studied by thermogravimetric analysis (TGA,
SETARAM Setsys Evolution, Hillsborough, NJ, USA;
samples were analyzed in Pt pans at a heating rate of
10°C/min up to 850°C in an atmosphere of air flowing
at 100 mL/min). Micro-Raman spectroscopy studies
were carried out using a Dilor XY Raman spectrometer
(λexc = 514.5 nm, HORIBA, Ltd., Kyoto, Japan). Ele-
mental analyses of metal-free NCFs were performed
using a Thermo Flash EA 1112 Series NC analyzer
(Thermo Fisher Scientific, Waltham, MA, USA). The
textural properties of NCFs were studied using nitro-
gen adsorption-desorption isotherms measured at 77 K
(Micromeritics ASAP 2020, Norcross, GA, USA) and using
the Brunauer-Emmett-Teller (BET) method between 0.05
and 0.3 P/P0 and t-Plot and Barret-Joyner-Halenda (BJH)
method. Density values were measured using an AccuPyc
II 1340 Micromeritics helium picnometer (Micromeritics,
Norcross, GA, USA).
Fiber spinning of NCF biocomposites was performed by

injecting 1:4 Au-NCF:sodium alginate (MW: 400K) aque-
ous dispersions (1 mg/mL Au-NCF prepared by bath son-
ication) into a coagulation bath (5% CaCl2 solution in 70%
M micrographs of NCFs produced by laser ablation of [FeCl2(Dppe)] (a)



Figure 3 TEM characterization of the different components of NCFs. TEM images of NCFs produced using [PdCl2(PhCN)2] (a), [NiCl2(PPh3)2]
(b), [CoCl2(PPh3)2] (c), and naphthalene (d) targets. Inset on (a) shows graphitic structures observed on [PdCl2(Phen)] foams (scalebar 50 nm).
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Figure 4 Raman spectra show typical features of high degree
carbon disorder in NCFs produced from naphthalene. The high
degree of carbon disorder in NCFs produced by laser ablation of
naphthalene is also demonstrated by the presence of broad bands
centered at approximately 1,360 cm−1 (D-band) and approximately
1,590 cm−1 (G-band) of equivalent intensities in Raman spectra.

Table 1 Measured densities of different carbon materials

Carbon material Density (g/cm3)

NCF 1.66

Multi-walled carbon nanotubesa 1.98

Nanodiamondb 2.97

Graphitic conesc 1.96

Carbon aerogel 0.20 to 1.00 [10,11]

Carbon xerogeld 1.73

Carbon blacke 1.91

Activated carbonf 2.05

Graphiteg 2.27

Ordered mesoporous carbonh 1.63

Carbon nanofoam 0.020 to 0.002 [12]
aHigh-purity multi-walled carbon nanotubes produced by the CVD technique
(10 to 15 nm in diameter, ≥10 microns in length; Nanothinx S.A.);
bNanodiamonds, purified, grade G01 (PlasmaChem); cGraphitic cones
produced by hydrocarbon pyrolysis (n-TEC) [13]; dCarbon xerogels prepared by
polycondensation of resorcinol and formaldehyde in water by Pekala's sol-gel
method [14]; eVulcan XC-72R carbon black (Delta Tecnic S.A.); fActivated
carbon (Morgui Clima S.L.); gGraphite, particle size <50 μm (Merck); hOrdered
mesoporous carbon synthesized using a template-mediated process [15].
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Figure 5 NCFs easily disperse in various solvents. Top image
shows NCFs in different solvents 60 s after being dispersed by mild
sonication. Bottom image shows the same dispersions after 48 h.
Solvents: 1-water, 2-acetone, 3-ethanol, 4-diethyl ether, 5-toluene,
6-dichlorometane, 7-hexane.
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methanol) following the carbon nanotube biofiber spinning
procedure reported by Razal et al. [7]. The electrical con-
ductivity of the spun fibers was characterized by four-probe
resistance measurements using a Keithley 2000 Multimeter
(Keithley Instruments, Inc., Cleveland, OH, USA).

Results and discussion
SEM (Figure 2), TEM (Figure 3), and EDX characterization
of the soot that resulted from the laser irradiation of differ-
ent organometallic targets show that our laser ablation
technique is not only restricted to the synthesis of
Au/NCFs and Cu/NCFs [5,6], but it can also provide
a new family of metal-NCF hybrids of any desired
metal. These metal-NCFs exhibit a spongy-like micro-
structure (Figure 2a) as a result of nanoparticle as-
sembly. These nanoparticles consist of amorphous
carbon particles, graphitic nanostructures, and metal
nanoparticle-containing amorphous carbon aggregates
(Figure 3a,b,c). Moreover, metal-NCFs that result from
the laser irradiation of [PdCl2(PhCN)2], [PdCl2(Phen)],
Figure 6 SEM micrographs of Au-NCF/alginate composite biofibers. S
the fiber cross-section (b).
and [PdCl2(Bipy)] also indicate that aromatic ligands
different than PPh3 and without phosphor in their
composition, such as benzonitrile, 1,10-phenanthroline, or
2,2´-bipyridine, can also efficiently act as carbon source for
the laser production of carbon matrices (Figures 2 and 3).
Based on these findings, we then irradiated different

aromatic compounds toward the synthesis of metal-free
and P-free NCFs. Thus, laser ablation of naphthalene,
phenanthrene, and 1,10-phenanthroline resulted in the
formation of a NCF material which consisted of both
amorphous carbon aggregates and graphitic nanodomains
(Figures 2b and 3d). Elemental analysis data reveal high
carbon contents (≥95%) for these metal-free NCFs. The
extensive charging observed in NCFs without any con-
ductive coating deposited on conducting carbon films for
SEM characterization reveals the nonconducting nature of
these materials. The Raman spectra of the metal-free
NCFs show broad D- and G-bands of comparable inten-
sities, a feature typical of short-range sp2-bonded carbons
[6,8]. As an example, we show in Figure 4 the spectrum of
NCFs produced by laser ablation of naphthalene. The
much broader aspect of the D-band (as compared to the
G-band) indicates that this material lacks long-range
graphitic order. According to Ferrari's model of graphite
amorphization path [8], this material would be in stage 2
of amorphization (denoted as sp2 a-C in [8]) in which
only some sp2-bonded rings remain, thus confirming
the predominance of amorphous carbon already observed
by TEM.
TGA analyses show that metal-free NCFs are ther-

mally stable in air up to temperatures of approximately
600°C. It is interesting to point out that the temperature
of maximum decomposition rate of NCFs produced by
laser ablation of PPh3 (which contains 8.2% P) is about
30°C higher than that of the naphthalene-produced
NCFs, probably as a result of flame retardant role of P
[9]. The study of the textural properties reveals that
NCFs produced by laser ablation of PPh3 and naphtha-
lene are mesoporous materials with BET surface areas
between 33 and 63 m2/g and mesopore volumes of 0.046
to 0.168 cm3/g, respectively. The measured BET surface
EM micrographs show a fiber overview (a) and the microstructure at
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area values are lower than those of other carbon mate-
rials consisting of amorphous carbon aggregates such as
carbon aerogels (typical values in the range 400 to 600
m2/g) [10,11] and carbon nanofoams (300 to 400 m2/g)
produced by femtosecond pulsed laser ablation of
HOPG [12]. Additionally, density values of 1.66 g/cm3

have been measured for naphthalene-produced NCFs by
He picnometry. These values are similar to those of
other carbon materials (Table 1) such as multi-walled
carbon nanotubes, carbon xerogels, carbon black, graph-
itic cones, and ordered mesoporous carbon but signifi-
cantly higher than those reported for carbon nanofoams
produced by ultrafast lasers (0.02 to 0.002 g/cm3) [12].
NCFs are collected from laser ablation processes as in-

tractable soots. In order to evaluate the potential chem-
ical processing capabilities of our NCFs, these materials
were dispersed in different solvents. Mild (bath) sonic-
ation resulted in NCF dispersions which are stable for
over 48 h in all tested solvents but in hexane (Figure 5).
This NCF remarkable dispersibility opens new opportun-
ities toward the incorporation of these nanocarbons into
functional materials and assemblies. Thus, Au-NCF/algin-
ate biocomposite fibers, tens of centimeters in length and
30 to 50 micrometers in diameter (Figure 6), were spun by
coagulation of sodium alginate assisted Au-NCF aqueous
dispersions in a CaCl2 water/methanol solution, followed
by RT drying in air of the resulting elastomeric gels. Four-
probe resistance measurements revealed that these fibers
were nonconducting. This fiber spinning method is an in-
teresting strategy for easy NCF handling and for providing
a confinement in the form of quasi 1D architectures to
metal nanoparticles.

Conclusions
The laser chemistry approach described in the present
work is a versatile method for the synthesis of metal
nanoparticles embedded in carbon matrices from mo-
lecular precursors. This laser chemistry is very appealing
for applications requiring metal nanoparticles largely
isolated from each other embedded in solid matrices.
Moreover, it can be used for the synthesis of metal-free,
P-free NCFs from commercial organic precursors, which
would in turn facilitate upscaling their production. On
the other hand, the chemical processing capabilities of
NCFs ease their handling and may open attractive op-
portunities toward their incorporation into matrices and
applications. Future challenges should deal with the de-
sign of production or processing strategies to increase
the surface area and conductivity of these materials to
enable their use as, for example, electrode materials, in
catalysis, or as functional magnetic materials.
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