
Chuang et al. Nanoscale Research Letters 2013, 8:214
http://www.nanoscalereslett.com/content/8/1/214
NANO EXPRESS Open Access
Experimental evidence for direct insulator-quantum
Hall transition in multi-layer graphene
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Abstract

We have performed magnetotransport measurements on a multi-layer graphene flake. At the crossing magnetic
field Bc, an approximately temperature-independent point in the measured longitudinal resistivity ρxx, which is
ascribed to the direct insulator-quantum Hall (I-QH) transition, is observed. By analyzing the amplitudes of the
magnetoresistivity oscillations, we are able to measure the quantum mobility μq of our device. It is found that at
the direct I-QH transition, μqBc ≈ 0.37 which is considerably smaller than 1. In contrast, at Bc, ρxx is close to the Hall
resistivity ρxy, i.e., the classical mobility μBc is ≈ 1. Therefore, our results suggest that different mobilities need to be
introduced for the direct I-QH transition observed in multi-layered graphene. Combined with existing experimental
results obtained in various material systems, our data obtained on graphene suggest that the direct I-QH transition
is a universal effect in 2D.
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Background
Graphene, which is an ideal two-dimensional system [1],
has attracted a great deal of worldwide interest. Interesting
effects such as Berry's phase [2,3] and fractional quantum
Hall effect [4-6] have been observed in mechanically exfo-
liated graphene flakes [1]. In addition to its extraordinary
electrical properties, graphene possesses great mechanical
[7], optical [8], and thermal [9] characteristics.
The insulator-quantum Hall (I-QH) transition [10-13] is

a fascinating physical phenomenon in the field of two-
dimensional (2D) physics. In particular, a direct transition
from an insulator to a high Landau-level filling factor ν >
2 QH state which is normally dubbed as the direct I-QH
transition continues to attract interest [14]. The direct I-
QH transition has been observed in various systems such
as SiGe hole gas [14], GaAs multiple quantum well devices
[15], GaAs two-dimensional electron gases (2DEGs)
containing InAs quantum dots [16-18], a delta-doped
GaAs quantum well with additional modulation doping
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[19,20], GaN-based 2DEGs grown on sapphire [21] and
on Si [22], InAs-based 2DEGs [23], and even some con-
ventional GaAs-based 2DEGs [24], suggesting that it is a
universal effect. Although some quantum phase transi-
tions, such as plateau-plateau transitions [25] and metal-
to-insulator transitions [26-29], have been observed in
single-layer graphene and insulating behavior has been ob-
served in disordered graphene such as hydrogenated
graphene [30-33], graphene exposed to ozone [34], reduced
graphene oxide [35], and fluorinated graphene [36,37], the
direct I-QH transition has not been observed in a
graphene-based system. It is worth mentioning that the
Anderson localization effect, an important signature of
strong localization which may be affected by a magnetic
field applied perpendicular to the graphene plane, was ob-
served in a double-layer graphene heterostructure [38], but
not in single-layer pristine graphene. Moreover, the dis-
order of single graphene is normally lower than those of
multi-layer graphene devices. Since one needs sufficient
disorder in order to see the I-QH transition [11], multi-
layer graphene seems to be a suitable choice for studying
such a transition in a pristine graphene-based system. Be-
sides, the top and bottom layers may isolate the environ-
mental impurities [39-42], making multi-layer graphene a
an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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Figure 1 Longitudinal and Hall resistivity ρxx(B) and ρxy(B) at
T = 0.28 K. The inset shows the converted ρxy (in units of 4e2/h )
and ρxx as a function of B.
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Figure 2 Longitudinal and Hall resistivity ρxx(B) and ρxy(B) at
various temperatures T. An approximately T-independent point in
ρxx is indicated by a crossing field Bc.
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stable and suitable system for observing the I-QH
transition.
In this paper, we report magnetotransport measure-

ments on a multi-layer graphene flake. We observe an
approximately temperature-independent point in the
measured longitudinal resistivity ρxx which can be ascribed
to experimental evidence for the direct I-QH transition.
At the crossing field Bc in which ρxx is approximately T-in-
dependent, ρxx is close to ρxy. In contrast, the product of
the quantum mobility determined from the oscillations in
ρxx and Bc is ≈ 0.37 which is considerably smaller than 1.
Thus, our experimental results suggest that different mo-
bilities need to be introduced when considering the direct
I-QH transition in graphene-based devices.

Methods
A multi-layer graphene flake, mechanically exfoliated from
natural graphite, was deposited onto a 300-nm-thick
SiO2/Si substrate. Optical microscopy was used to locate
the graphene flakes, and the thickness of multi-layer
graphene is 3.5 nm, checked by atomic force microscopy.
Therefore, the layer number of our graphene device is
around ten according to the 3.4 Å graphene inter-layer
distance [1,43]. Ti/Au contacts were deposited on the
multi-layer graphene flake by electron-beam lithography
and lift-off process. The multi-layer graphene flake was
made into a Hall bar pattern with a length-to-width ratio
of 2.5 by oxygen plasma etching process [44]. Similar to
the work done using disordered graphene, our graphene
flakes did not undergo a post-exfoliation annealing treat-
ment [45,46]. The magnetoresistivity of the graphene de-
vice was measured using standard AC lock-in technique at
19 Hz with a constant current I = 20 nA in a He3 cryostat
equipped with a superconducting magnet.

Results and discussion
Figure 1 shows the curves of longitudinal and Hall resistiv-
ity ρxx(B) and ρxy(B) at T = 0.28 K. Features of mag-
netoresistivity oscillations accompanied by quantum Hall
steps are observed at high fields. In order to further study
these results, we analyze the positions of the extrema of the
magnetoresistivity oscillations in B as well as the heights of
the QH steps. Although the steps in the converted Hall
conductivity ρxy are not well quantized in units of 4e2/h,
they allow us to determine the Landau-level filling factor as
indicated in the inset of Figure 1. The carrier density of our
device is calculated to be 9.4 × 1016 m−2 following the pro-
cedure described in [47,48].
We now turn to our main experimental finding. Figure 2

shows the curves of ρxx(B) and ρxy(B) as a function of
magnetic field at various temperatures T. An approxi-
mately T-independent point in the measured ρxx at Bc =
3.1 T is observed. In the vicinity of Bc, for B < Bc, the sam-
ple behaves as a weak insulator in the sense that ρxx
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decreases with increasing T. For B > Bc, ρxx increases with
increasing T, characteristic of a quantum Hall state. At Bc,
the corresponding Landau-level filling factor is about 125
which is much bigger than 1. Therefore, we have observed
evidence for a direct insulator-quantum Hall transition in
our multi-layer graphene. The crossing points for B > 5.43
T can be ascribed to approximately T-independent points
near half filling factors in the conventional Shubnikov-de
Haas (SdH) model [17].
By analyzing the amplitudes of the observed SdH oscilla-

tions at various magnetic fields and temperatures, we are
able to determine the effective mass m* of our device
which is an important physical quantity. The amplitudes
of the SdH oscillations ρxx is given by [49]:

Δρxx B;Tð Þ ¼ 4ρ0 exp
−π
μqB

" #
D B;Tð Þ ð1Þ

where D B;Tð Þ ¼ 4π3kBm�T
heB = sinh 4π3kBm�T

heB , ρ0, kB, h, and e
are a constant, the Boltzmann constant, Plank's constant,

and electron charge, respectively. When 4π3kBm�T
heB > 1 , we

have

ln
Δρxx B;Tð Þ

T
¼ C1−

4π3kBm�T
heB

ð2Þ

where C1 is a constant. Figure 3 shows the amplitudes of
the SdH oscillations at a fixed magnetic field of 5.437 T.
We can see that the experimental data can be well fitted
to Equation 2. The measured effective mass ranges from
0.06m0 to 0.07m0 where m0 is the rest mass of an electron.
Interestingly, the measured effective mass is quite close to
that in GaAs (0.067m0).
In our system, for the direct I-QH transition near the

crossing field, ρxx is close to ρxy. In this case, the classical
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Figure 3 Amplitudes of the observed oscillations Δρxx at
B = 5.437 T at different temperatures. The curve corresponds to
the best fit to Equation 2.
Drude mobility is approximately the inverse of the cross-
ing field 1/Bc. Therefore, the onset of Landau quantization
is expected to take place near Bc [50]. However, it is noted
that Landau quantization should be linked with the
quantum mobility, not the classical Drude mobility [19].
In order to further study the observed I-QH transition, we
analyze the amplitudes of the magnetoresistivity oscilla-
tions versus the inverse of B at various temperatures. As
shown in Figure 4, there is a good linear fit to Equation 1
which allows us to estimate the quantum mobility to be
around 0.12 m2/V/s. Therefore, near μqBc ≈ 0.37 which is
considerably smaller than 1. Our results obtained on
multi-layered graphene are consistent with those obtained
in GaAs-based weakly disordered systems [19,21].
It has been shown that the elementary neutral excita-

tions in graphene in a high magnetic field are different
from those of a standard 2D system [51]. In this case, the
particular Landau-level quantization in graphene yields
linear magnetoplasmon modes. Moreover, instability of
magnetoplasmons can be observed in layered graphene
structures [52]. Therefore, in order to fully understand the
observed I-QH transition in our multi-layer graphene
sample, magnetoplasmon modes as well as collective
phenomena may need to be considered. The spin effect
should not be important in our system [53]. At present, it
is unclear whether intra- and/or inter-graphene layer in-
teractions play an important role in our system. Neverthe-
less, the fact that the low-field Hall resistivity is nominally
T-independent suggests that Coulomb interactions do not
seem to be dominant in our system.

Conclusion
In conclusion, we have presented magnetoresistivity mea-
surements on a multi-layered graphene flake. An approxi-
mately temperature-independent point in ρxx is ascribed to
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the direct I-QH transition. Near the crossing field Bc, ρxx is
close to ρxy, indicating that at Bc, the classical mobility is
close to 1/Bc such that Bc is close to 1. On the other hand,
μqBc ≈ 0.37 which is much smaller than 1. Therefore, dif-
ferent mobilities must be considered for the direct I-QH
transition. Together with existing experimental results
obtained on various material systems, our new results
obtained in a graphene-based system strongly suggest that
the direct I-QH transition is a universal effect in 2D.
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