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Abstract

In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power
of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p
(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO
and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray
diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis
showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in
the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular
to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V
characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction
devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory.
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Background
Transparent electronics is an advanced technology con-
cerning the creation of invisible electronic devices. To
realize transparent electronic and optoelectronic devices,
transparent conducting oxides (TCOs) have been widely
utilized [1-3]. Zinc oxide (ZnO) is an n-type semicon-
ductor with a large binding energy of 60 meV and a wide
bandgap of 3.3 eV. Doped ZnO thin films are promising
alternatives to replace indium-tin oxide (ITO) thin films
as TCOs due to the former's stable electrical and optical
properties. The low resistivity of ZnO-based thin films
arises from the presence of oxygen vacancies and zinc in-
terstitials [4]. Aluminum (Al) [5], gallium (Ga) [6], and in-
dium (In) [7,8] have been widely studied as dopants to
enhance the n-type conductivity of ZnO-based thin films.
ZnO-based TCO materials have numerous potential appli-
cations in electronic and optoelectronic devices, such as
solar cells [9], light-emitting diodes [10], blue laser diodes
[11], and flat-panel displays [12]. Trivalent cation-doped
ZnO thin films present good electrical conductivity and
transparency over the visible spectrum. In the past, Chung
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et al. investigated the properties of Ti-doped ZnO thin
films with different TiO2 concentrations and reported that
the lowest resistivity of TZO thin films was achieved when
the Ti concentration was 1.34 mol% [13]. Lin et al. studied
the effect of substrate temperature on the properties of
TZO thin films by simultaneous radio frequency (RF) and
DC magnetron sputtering [14]. Wang et al. examined the
effects of substrate temperature and hydrogen plasma
treatment on the characteristics of TZO thin films [15].
Nickel oxide (NiO) is a p-type semiconductor TCO ma-

terial with a wide range of applications: it has been used in
transparent conductive films [16] and electrochromic de-
vices [17] and as a functional layer material in chemical
sensors [18]. NiO has a wide bandgap of 3.6 to 4.0 eV at
room temperature; hence, a NiO thin film is also transpar-
ent in the range of visible light [19]. According to the
literature, TZO and NiO thin films can be prepared by
sputtering [16,20], chemical vapor deposition [21,22],
and the sol-gel process [23,24]. Among these methods,
sputtering is the most widely used. In this paper, the fabri-
cation and characterization of an optically transparent p-n
heterojunction diode by deposition of NiO thin films on
TZO thin films are presented, with an emphasis on device
performance, including transparent and current-voltage
characteristics. In addition, the structural, optical, and
n Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:cfyang@nuk.edu.tw
http://creativecommons.org/licenses/by/2.0


Huang et al. Nanoscale Research Letters 2013, 8:206 Page 2 of 8
http://www.nanoscalereslett.com/content/8/1/206
electrical properties of the NiO/TZO heterojunction di-
odes were characterized by scanning electron microscopy
(SEM), X-ray diffraction (XRD) patterns, UV-visible spec-
troscopy, and Hall effect measurement.
Methods
The raw materials (ZnO and TiO2) were weighed according
to the composition formula ZnO= 98.5 mol% and TiO2 =
1.5 mol% (TZO) and ball-milled with deionized water for
1 h. After being dried and ground, the powder was uni-
axially pressed into a 2-in. plate in a steel die, and sintering
was carried out at 1,350°C in air for 2 h. High-purity NiO
powder was sintered at 1,500°C to prepare the ceramic tar-
get. TZO thin films were deposited on 25 mm× 25 mm× 1
mm ITO glass (7 Ω/per square area) substrates; then, NiO
thin films were deposited on the TZO using a Syskey 13.56
MHz RF magnetron sputtering system (Syskey Technology
Ltd., Hsinch County, Taiwan). The deposition power was
100 W for the NiO thin films and was changed from 75 to
150 W for the TZO thin films. The working distance be-
tween the substrate and target was fixed at 5 cm. The base
pressure was 5 × 10−6 Torr, and the working pressure was
maintained at 5 × 10−3 Torr. After the TZO and NiO thin
films were deposited, a circle Al electrode of 1 mm in diam-
eter was deposited on the NiO thin films (as shown in
Figure 1b). The crystalline structures of the TZO and NiO
thin films were determined with an X-ray diffractometer
using CuKα radiation (K = 1.5418 Å). The deposition times
of the NiO and TZO thin films were 10 and 20 min, re-
spectively. The film thicknesses were measured using a
Nano-view SEMF-10 ellipsometer (Nano-View Co., Ltd.,
Ansan, South Korea) and confirmed by a field emission
scanning electron microscope. The mobility, carrier con-
centration, and resistivity were obtained from Hall effect
measurements using the Van der Pauw method (HMS-
3000, Ecopia, Anyang-si, South Korea). Optical transmit-
tance was measured using a UV/vis/IR spectrophotometer
(V-570, JASCO Inc., Easton, MD, USA) in the 250- to
2,500-nm wavelength range. The current-voltage (I-V)
characteristics of the NiO/TZO heterojunction diodes were
250 nm

(a)

Figure 1 Images of a NiO/125 W-deposited TZO heterojunction diode
measured by an HP4156 semiconductor parameter analyzer
(Hewlett-Packard, Palo Alto, CA). The measurements were
performed by changing the bias voltage from +10 to −10 V.
Results and discussion
Surface SEM images of the TZO and NiO thin films are
shown in Figure 2. In Figure 2a, b, when the deposition
power was 75 and 100 W, respectively, the surface morph-
ologies of the TZO thin films are smooth and not com-
pact. Particle aggregation in the TZO thin films appeared
to increase as the deposition power increased from 100 to
150 W, as shown in Figure 2b, c, d. This particle aggrega-
tion can be attributed to a high deposition rate due to the
high-energy plasma when the deposition power was 125
and 150 W. However, as the deposition power was in-
creased to 150 W, the roughness of the TZO thin films in-
creased because of the large aggregations of particles. In
Figure 2e, by contrast, the 100 W-deposited NiO thin film
has a smooth and uniform surface.
NiO deposited at 100 W had a hall mobility of 6.19

cm2/V s, carrier concentration of 4.38 × 1020 cm−3, and re-
sistivity of 2.2 × 10–3 Ω cm (not shown here). Figure 3
shows the resistivity, hall mobility, and carrier concentra-
tion of the TZO thin films as a function of deposition
power. Electrons generated from oxygen vacancies and Zn
interstitial atoms resulting from the dopant primarily de-
termine the conduction properties of TZO thin films.
Therefore, the films' electrical conductivity will exhibit
large variations when different deposition powers are used.
As the deposition power was increased from 75 to 150 W,
the hall mobility increased from 7.45 to 11.69 cm2/V s,
and the carrier concentration increased from 2.75 × 1019

to 4.38 × 1020 cm−3. The higher hall mobility and carrier
concentration are due to the higher deposition power; as
it increases from 75 to 150 W, the kinetic energy of the
deposited molecules increases, so more molecules can dif-
fuse and deposit onto the surfaces of the glass substrates.
Consequently, the TZO thin films will have better crystal
quality and larger particle aggregations. Therefore, a re-
duced grain boundary barrier is obtained, leading to an
. (a) Surface and (b) cross-sectional SEM images.



Figure 2 Surface SEM images of TZO and NiO thin films as a function of deposition power. TZO thin films were deposited at (a) 75 W,
(b) 100 W, (c) 125 W, and (d) 150 W; (e) the NiO thin film deposited at 100 W.
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Figure 3 Resistivity, hall mobility, and carrier concentration of TZO thin films as a function of deposition power.
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Figure 4 XRD patterns of NiO thin films as a function of
deposition power. (a) 75 W, (b) 100 W, (c) 125 W, and (d) 150 W.
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increase in carrier mobility. The resistivity of TCO thin
films is proportional to the reciprocal of the product of
carrier concentration (N) and hall mobility (μ):

ρ ¼ 1=Neμ ð1Þ

which is a combined result of both the mobility and the
carrier concentration. The resistivity of TZO thin films
linearly decreased from 1.3 × 10−2 to 2.2 × 10−3 Ω cm when
the deposition power was increased from 75 to 150 W.
The surface SEM image of a heterojunction diode

formed by using a 100 W-deposited NiO thin film on
125 W-deposited TZO thin film is shown in Figure 1a; the
morphology was similar to that of the 125 W-deposited
TZO thin film. Also, the surface morphologies of the
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Figure 5 XRD patterns of NiO/TZO heterojunction diodes as a
function of deposition power of TZO thin films. (a) 75 W, (b) 100
W, (c) 125 W, and (d) 150 W.
100 W-deposited NiO thin film on the 100 W-deposited
and 150 W-deposited TZO thin films were similar to the
results of the 100 W-deposited and 150 W-deposited
TZO thin films (Figure 2b, d, not shown here). Those re-
sults demonstrate that the surface morphologies of the
TZO thin films deposited at different powers will domin-
ate the surface crystalline structure of NiO thin films. The
XRD patterns compared in Figure 4 (for NiO thin films)
and Figure 5 (for NiO/TZO thin films) will also demon-
strate that the TZO thin films can dominate the crystalline
structure of NiO thin films. The uniformity and roughness
of the 100 W-deposited NiO/125 W-deposited TZO
heterojunction diode were better than those of the NiO/
TZO heterojunction diodes with TZO thin films deposited
at other powers (not shown here). Figure 1b shows the
cross-section SEM image of the 100 W-deposited NiO/
125 W-deposited TZO heterojunction diode; the Al elec-
trode and the ITO substrate electrode are also observed in
Figure 1b. Cross-sectional observations of all the NiO/
TZO heterojunction diodes showed that NiO thin films
deposited on different TZO thin films had the same thick-
ness of about 180 nm, which was achieved by controlling
the deposition time. However, although the TZO thin
films were deposited in the same amount of time, they
had thicknesses of about 315, 350, 380, and 450 nm as the
deposition power was changed from 75 W (not shown
here) to 100 W (not shown here), 125 W, and 150 W (not
shown here), respectively.
Figure 4 shows the XRD patterns of the NiO thin films

deposited as a function of deposition power. No matter
what deposition power was used, the only (200) diffraction
peak was observed in the NiO thin films, and the 100 W-
deposited NiO thin films had the optimal crystallization.
XRD patterns of the NiO/TZO heterojunction diodes for
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Figure 6 GIAXRD patterns of NiO/TZO heterojunction diodes as
a function of deposition power of TZO thin films. (a) 75 W, (b)
100 W, (c) 125 W, and (d) 150 W.
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TZO thin films deposited at different deposition powers
are shown in Figure 5. All patterns exhibited the (002) and
(004) diffraction peaks of the ZnO (TZO) crystallization
preferential orientation along the c-axis at diffraction an-
gles (2θ) near 34.28° and 72.58°, with a hexagonal structure;
no peak characteristic of TiO2 was found. The diffraction
peak revealed that a 2θ value of 36.74° corresponded to the
(111) plane of the NiO thin film with a cubic structure,
which was different from the result in Figure 4. The result
in Figure 5 is an important proof that as the NiO thin films
is deposited on the TZO thin films with the (002) and (004)
diffraction peaks, the crystalline structure of the NiO thin
films will be controlled by TZO thin films. For that, the
main diffraction peak is changed from the (200) plane
to the (111) plane, and then the TZO thin films will
dominate the crystalline structure (Figure 1a). Figure 5
also shows that both the diffraction intensity ratio of
2θTZO(002)/2θNiO(111) and the diffraction intensity of the
TZO thin films increased with increasing deposition
power. In addition, as the deposition power increased
from 75 to 150 W, the full width at half maximum
(FWHM) values decreased from 0.417 to 0.314, as shown
in the inset of Figure 5. Those results reveal that the
crystallization of TZO thin films is enhanced at higher de-
position powers. This finding proves that the resistivity of
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Figure 8 NiO/TZO heterojunction diodes. (a) Transmittance and (b) αhυ
TZO thin films closely depends on variations in deposition
power (see Figure 3) because the crystallization of TZO
thin films increases as the FWHM value decreases [14].
The grazing incidence angle X-ray diffraction (GIAXRD)

patterns of NiO/TZO heterojunction diodes in the 2θ
range of 31° to 39° are shown in Figure 6. The diffraction
spectra show that the 2θ value of the (002) peak shifted
from 34.29° to 34.45° as the deposition power of the TZO
thin films increased from 75 to 150 W. This may be attrib-
uted to the fact that as higher deposition power is used,
higher crystallization of the TZO thin films is obtained,
and the effect for Ti atoms to substitute the sites of Zn
atoms is more apparently revealed. Since the ionic radius
of Ti4+ (68 pm) is smaller than that of Zn2+ (74 pm), the
2θ value of the (002) peak is expected to shift upwards.
The optical transmittance spectra of TZO and NiO thin

films in the wavelength range from 250 to 2,500 nm are
shown in Figure 7a. The average transmittance rate of
TZO thin films is about 90% in the 400- to 1,200-nm
range, even when different deposition powers are used,
and the average transparency of the NiO thin film is about
45% in the 400- to 700-nm range. In the ultraviolet range,
all of the TZO thin films showed a sharp absorption edge
and exhibited a blueshift phenomenon with increasing de-
position power, as shown in the results in Figure 7b. This
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blueshift can be explained by the Burstein-Moss shift, a
shift of the Fermi level into the conduction band, the
energy of which enhances the optical bandgap [25,26]:

ΔEBM
g ¼ ħ2k2F

2
1
me

þ 1
mh

� �
¼ ħ2k2F

2m�
vc

; ð2Þ

where kF stands for the Fermi wave vector and is given by
kF = (3π2ne)

1/3; me is the effective mass of electrons in the
conduction band, and mh is the effective mass of holes in
the valence band, which can be simplified as the reduced
effective mass m�

vc . ΔE
BM
g can be rewritten by inducing kF

for the carrier concentration ne:

ΔEBM
g ¼ ħ2

2m�
vc

3π2ne
� �2=3

: ð3Þ

Equation 3 shows that the Burstein-Moss shift of the
absorption edge to the shorter wavelength region is due
to the increase in carrier concentration (ne), as demon-
strated in Figure 3.
Figure 8 shows the transmittance spectra of the NiO/

TZO heterojunction diodes as a function of the TZO
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Figure 10 Log(I)-log(V) characteristics of NiO/TZO heterojunction diod
W-deposited TZO, (b) 125 W-deposited TZO, and (c) 150 W-deposited TZO
thin films' deposition power. The optical transmittance at
400 to 700 nm is more than 80% for all of the NiO/TZO
heterojunction diodes, regardless of the deposition power
of the TZO thin films. Compared with Figure 7a, the re-
sults in Figure 8a show that the transmittance rate of the
NiO/TZO heterojunction bilayer thin films were higher
than that of the NiO thin film. The results in Figures 2
and 3 prove that the surface morphologies and crystalline
structures of the bilayer NiO/TZO thin films are domi-
nated by the TZO thin films. For that, the transmittance
rate of the NiO/TZO heterojunction bilayer thin films
is also dominated by the TZO thin films and will be higher
than that of the NiO thin film. All of the NiO/TZO
heterojunction diodes showed a sharp absorption edge,
but they did not exhibit the blueshift phenomenon as the
deposition power of the TZO thin films increased. Com-
pared with other research, the NiO/TZO heterojunction
diodes obtained in this study have the highest transmit-
tance, even higher than that of deposited NiO thin films.
The corresponding optical bandgap (Eg) was determined
by applying the Tauc model and the Davis and Mott model
[27] using Equation 4:

αhυð Þ2 ¼ c hυ−Eg
� � ð4Þ

where α is the optical absorption coefficient, c is the con-
stant for direct transition, h is Planck's constant, and υ is
the frequency of the incident photon. Figure 8b shows
(αhυ)2 vs. hυ for the NiO/TZO heterojunction diodes.
Their Eg values increased when the deposition power of
the TZO thin films increased from 75 to 125 W. The vari-
ations in Eg values roughly agree with those of the carrier
concentrations shown in Figure 3.
Figure 9 shows the I-V characteristics of the NiO/TZO

heterojunction diodes. The nonlinear and rectifying I-V
characteristics confirmed that a p-n junction diode was
successfully formed in the NiO/TZO heterojunction struc-
ture. In the forward bias condition, the turn-on voltages of
the NiO/TZO heterojunction diodes were about 2.57,
1.83, and 2.05 V as the deposition powers of the TZO thin
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films were 100, 125, and 150 W, respectively. The turn-on
voltage of the NiO/TZO heterojunction diodes decreased
as the deposition power increased from 75 to 125 W; then,
it increased with a 150-W deposition power. As the depos-
ition power increased from 75 to 125 W, the resistivity
linearly decreased (Figure 3), causing the decrease in turn-
on voltage. However, even though TZO thin films depos-
ited at 150 W have lower resistivity, the increase in turn-
on voltage is due to the greater roughness of the TZO
thin film (Figure 2d) and the defects that exist between
the p-n heterojunction interfaces of the NiO and TZO
thin films. In addition, the forward currents of the NiO/
TZO heterojunction diodes abruptly increase when the
turn-on voltages are over 2.57 V (deposition power
100 W), 1.83 V (125 W), and 2.05 V (150 W), which dem-
onstrates that the I-V curves are a characteristic of a typ-
ical p-n junction diode. For TZO thin films deposited at
75 W, the symmetrical I-V curve of the NiO/TZO
heterojunction device is not a typical characteristic of a
p-n junction diode.
The log (I)-log (V) plots in Figure 10 clearly show the

power law behavior of current and voltage, which can be
used to find the behavior of the charge transport in
Figure 9. Figure 10 proves that the space-charge limited
current (SCLC) theorem dominates the mechanism
of the I-V curves in the structure of the NiO/TZO
heterojunction diodes [23,24]. Because the NiO/75 W-
deposited TZO heterojunction device had a symmetrical
I-V curve, as forward and reverse voltages were used and
the current was small, as +10 and −10 V were used as
bias, the SCLC theorem was not used to explain its
mechanism. A low forward voltage for V < 0.4 V (0.26,
0.097, and 0.17 V for deposition powers of 100, 125, and
150 W, respectively) indicates a transport mechanism
obeying the Ohmic law at region (I). The value of the
forward voltage decreases as the deposition power of the
TZO thin films increases from 75 to 125 W, but the
value of the forward voltage increases when the depos-
ition power of the TZO thin films is 150 W.
From the above results, we know that the variations

in forward voltage are similar to the turn-on voltages of
the NiO/TZO heterojunction diodes. In the high for-
ward voltage region (III), the voltages are large 4.7, 1.3,
and 2.1 V for TZO thin film deposition powers of 100,
125, and 150 W, respectively, and those results are
dominated by the SCLC mechanism. The transition re-
gion (II), between regions (I) and (III), often appears in
SCLC-dominated I-V characteristics when traps are
used. The presence of trap bands with different energies
is responsible for different slopes in the different
regions of the I-V characteristics. The results obtained
in this study indicate that the charge transport mechan-
ism of the investigated diodes can be influenced by
the SCLC.
Conclusions
In this study, the resistivity of TZO thin films linearly de-
creased from 1.3 × 10−2 to 2.2 × 10−3 Ω cm, and the aver-
age transparency of TZO thin films was about 90% in
the wavelength range from 400 to 1,200 nm as the depos-
ition power increased from 75 to 150 W. Transparent p-n
heterojunction diodes were successfully fabricated using
NiO and TZO thin films. These NiO/TZO heterojunction
diodes had an average transparency of over 82% in the vis-
ible region. For TZO thin films deposited at 75 W, the sym-
metrical I-V curve of the NiO/TZO heterojunction diodes
was not a typical characteristic of a p-n junction diode. The
forward currents of the NiO/TZO heterojunction diodes
abruptly increased when the turn-on voltages were over 2.57
V (deposition power 100 W), 1.83 V (125 W), and 2.05 V
(150 W), demonstrating that these I-V curves are a charac-
teristic of a typical p-n junction diode. The log scale of
these I-V curves indicated that the SCLC dominates the
current transport.
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