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Abstract

We analyze different examples to show that the so-called generalized Hartman effect is an erroneous presumption.
The results obtained for electron tunneling and transmission of electromagnetic waves through superlattices and
Bragg gratings show clearly the resonant character of the phase time behavior so that a generalized Hartman effect is
not expected to occur. A reinterpretation of the experimental results in double Bragg gratings is proposed.
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Background
The Hartman [1] effect is known as the independence of
the tunneling time on the barrier width as this parame-
ter gets large. It has been shown that the experimental
evidences of this effect on the transmission times of pho-
tons and electromagnetic pulses [2-6] are compatible with
phase time calculations [7]. The Hartman effect has been
investigated in various ways by extending the system not
only for a single barrier but also for double [8,9] and
multiple barrier [10,11] structures. Olkhovsky, Recami,
and Salesi came out with the idea that for non-resonant
tunneling through two potential barriers, the tunneling
time (which is a phase time) is independent not only of
the barrier width but also of the barrier separation [8].
The approximations introduced in this reference to obtain
the unknown coefficients, led these authors to unphysical
results like the generalized Hartman effect. This has been
called the generalized Hartman effect (GHE). The two-
barrier problem can be solved without approximations,
see for example, in the work of Pereyra [12]. An experi-
ment to check this effect was performed by Longhi et al.
[10] where optical pulses of 1, 550 nm wavelength were
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transmitted through a double-barrier system of Bragg
gratings. In this reference, non-conclusive and inappro-
priately presented results for five different values of the
gratings separation were reported. Most of the theo-
retical conclusions were based on questionable formu-
las and unnecessarily involved calculations. For example,
Equation 2 (used in Equations 3 and 4) of [8] is not the
actual transmission coefficient through a double Bragg
grating. A criticism on the mathematical rigor on GHE
is also given by S. Kudaka and S. Matsumoto [13,14]. It
is easy to check from a straightforward calculation, or
from the precise and general formulas published in [7]
as quoted below, that the phase time for a double barrier
(DB) with separation L has the structure

τ = T2
2L
T

dk
dω

+ T2Ai(F sin kL + G cos kL)

+ T2Ar(F cos kL + G sin kL) (1)

with T2 and T the double- and single-barrier transmis-
sion coefficients, respectively, k the wave number, ω the
frequency and Ai, Ar , F, and G simple functions of the
potential parameters (P. Pereyra and H. P. Simanjuntak,
unpublished work). Despite this clear dependence on L,
involved and contradictory arguments lead to establish
that τ becomes independent of L [8,10,11]. In the follow-
ing we will consistently use a for the separation between
barriers.
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For the inference of a generalized Hartman effect to be
meaningful for multi-barriers, double superlattices (SLs)
or double Bragg gratings (BG), one would of course need
to keep the physical parameters [like the energy (wave-
length) of the particle (wave)] fixed as the length between
barriers is increased. The tunneling and transmission
times behavior should be taken with care when one tries
to find aHartman effect due to barrier separation inmulti-
barrier systems [8,11] since, in general, the density of res-
onance energies grows rapidly as the separation increases.
It is well known that the non-resonant gaps in the band
structure of a SL or a BG become resonating when these
systems are divided and separated; and the separation is
increasingly varied. This was already recognized in [15]
(for double SL) and in [10] (for double BG). On the other
hand, it is well known that the tunneling time follows the
resonant band structure [7,16]. Thus, it is not possible
to keep increasing the separation between barriers and
superlattices without crossing resonances. For this rea-
son, visualized here with specific examples for electrons
and electromagnetic waves, the existence of a generalized
Hartman effect is a rather questionable issue. For these
examples we perform first principle calculations using the
actual transmission coefficient of the system (such as that
of double BG in the experiment in [10]) so that we can
justify completely that the so-called generalized Hartman
effect is erroneous.
To study the Hartman effect and to criticize the pre-

sumption of a generalized Hartman effect in superlattices,
Bragg gratings, and multi-barrier systems, we will use the
theory of finite periodic system that allows straightfor-
ward calculation of the phase time. For electron tunneling,
we shall assume periodic and sectionally constant poten-
tials with cells of length �c = a + b and a barrier of
width b and strength Vo in the middle. For electromag-
netic waves, each cell consisting of dielectrics 1 and 2 will
contain a dielectric 2 of length b in the middle. In this case
εi, ni, and μi (with i = 1, 2) are the corresponding permit-
tivities, refractive indices, and permeabilities; the regions
outside the SL are assumed to be air. For Bragg gratings,
the refractive indices are periodic.

Methods
If we have a Gaussian wave packet (of electrons or elec-
tromagnetic waves) through a SL of length n�c − a, the
centroid phase time (which is taken here as the tunneling
or transmission time) is given by [7,17,18]

τn(E) = −a�
dk
dE

+ �

|αn|2
{
1
2
U2n−1(αR)

dαI
dE

− αI(
1 − α2

R
) [

n − αR
2
U2n−1(αR)

] dαR
dE

}
. (2)

Here α = αR + iαI is the (1,1) element of the single-cell
transfer matrix M; Un(αR) are the Chebyshev polynomi-
als of the second kind evaluated at αR; and αn is the (1,1)
element of the n-cell transfer matrix Mn. This is given by
[16]

αn = Un(αR) − α∗Un−1(αR). (3)

At resonance, where Un−1 = U2n−1 = 0, we have [16]

αR = cos
(νπ

n

)
ν = 0,±1, . . . (4)

The expression for the tunneling or transmission time
simplifies as

τn,res = −a
√
mA
2E

− n�αI(
1 − α2

R
) dαR
dE

. (5)

The tunneling time in Equation 2 is exact and general
and valid for arbitrary number of cells, barrier width,
and barrier separation. Thus, one can check the exis-
tence or not of a (generalized) Hartman effect at will.
For concrete examples, we consider superlattices like
(GaAs/Al0.3Ga0.7As)n/GaAs, with electron effective mass
mA = 0.067m in GaAs layers,mB = 0.1m in Al0.3Ga0.7As
layers (m is the bare electron mass) and Vo = 0.23 eV, and
Bragg gratings with periodic refractive index.

Results and discussion
Electron tunneling
If we consider electrons through superlattices with unit
cell length �c = a + b, we will have

α ≡ M11 = exp[ ika] (cosh qb−i(q2−k2) sinh qb/2qk)
(6)

with k = √
2mAE/� and q = √

2mB(Vo − E)/�. When
mA, mB and Vo are taken as fixed parameters, we choose
a = 100 Å and b = 30 Å.
For a single barrier, n = 1, the tunneling time τ1 plot-

ted in Figure 1 as a function of the reduced barrier width
b/λ shows the well-known Hartman effect. The energy
E is kept fixed and λ = 2π�/

√
2mAE is the de Broglie

wavelength.
With αR and αI growing exponentially with the barrier

width b, one can easily show from Equation 2 that for large
b, the non-resonant tunneling time approaches that for a
single barrier, i.e., τn(E) ≈ τ1(E) as

τn(E) ≈ �√
(Vo − E)E

Vo
√
mA/mB

Vo − E(1 − mA/mB)
. (7)

This is the well-known Hartman effect. Since this quan-
tity becomes also independent of the barrier separation
[8,11] a, it has been taken as the analytical evidence of a
generalized Hartman effect. However, such an approxima-
tion that leads to the independence on a and n is obtained
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Figure 1 The single-barrier transmission coefficient and the
tunneling time. The single-barrier transmission coefficient 1/|α|2
(gray lines) and the tunneling time τ1 (dark lines) as functions of the
reduced barrier width b/λ, when the electron energies are
E = 0.122516 eV, E = 0.15 eV and E = 0.2 eV. In the tunneling time
curves, the Hartman effect is evident.

by taking the limit of large b first that is strictly speak-
ing infinite, which makes the first barrier the only one
that matters for the incoming wave to penetrate while the
rest of the SL is immaterial. This was also pointed out by
Winful [9]. However, Winful [9] used an approximation:
The transmission of the double square barrier potential to
model the transmission through the double BG. Here, we
present calculations using the actual transmission coef-
ficient through the double BG. As mentioned before, for
the generalized Hartman effect to bemeaningful, it should
not matter whatever limit we take first whether on a, b, or
n. It turns out that a non-resonant energy region becomes
resonant as the separation a increases (see the discussion
on the double Bragg gratings in section ‘Hartman effect in
two Bragg gratings systems’).
The situation is completely different for resonant tun-

neling through a SL with large but finite barrier width b
where Equation 5 shows that the tunneling time becomes
τn(E) ∝ be2qb (since αR and αI behave as eqb for large b).
Thus, relatively small barrier width would be needed to
study the effect of the barrier separation and the number
of barriers on the tunneling time. The tunneling time for
a relatively small barrier width is shown in Figure 2 for an
electron (with energy E = 0.15 eV) through SLs which
number of cells are n = 3, 4, and 6.
Looking at αR and αI , that are oscillating functions in a,

it is clear that it is not possible to have the tunneling time
to be independent of the barrier separation a, by keeping
the barrier width and number of cells fixed. Therefore, the
so-called generalized Hartman effect is at least dubious.
The tunneling time behavior that will be found below for
the double BG is easy to understand here. Starting with
a certain barrier separation a, a non-resonant phase time
becomes a resonant one as a is increased, while the other
parameters are kept fixed. This is shown in Figure 3 where
the tunneling time is plotted as a function of the reduced

Figure 2 The tunneling time τn as a function of the reduced
barrier width. The tunneling time τn as a function of the reduced
barrier width b/λ for electrons (with energy E = 0.15 eV) through
superlattices with n = 3, 4, and 6.

barrier separation, a/λ, for fixed b, n, and electron energy
E. This result shows that in this kind of systems, the
presumption of a generalized Hartman effect is incorrect.
The Hartman effect as a consequence of varying the

number of cells was already discussed in [7]. In Figure 4 we
show three qualitatively different examples on the behav-
ior of the tunneling time as a function of n. In Figure 4a
for energies in the gap (E = 0.15 eV and E = 0.2 eV), the
saturation of the tunneling time exhibits the well-known
Hartman effect. In Figure 4b, the energy lies at the edge of
a resonant region. The phase time τn resonates for multi-
ples of n = 21. This behavior is clearly understood if we
consider Equations 4 and 5. Equation 4 implies that the
same resonance energy Enν is found for different number of
cells as long as the ratio ν/n is constant. This means that
En1 = E2n2 = E3n3 = . . . . From Equation 5, it is also evident
the linear dependence of τn on n.

The Hartman effect and the electromagnetic waves
Electromagnetic waves have been used for discussions on
the Hartman effect [9]. For a superlattice L(H/L)n made
of alternating layers with refractive indices nL and nH ,
the phase time (PT) for each frequency component of a
Gaussian wave packet through a SL of length n�c − a is

Figure 3 The tunneling time τ6 as a function of reduced barrier
separation and fixed barrier width. The tunneling time τ6 as a
function of reduced barrier separation a/λ for fixed barrier width b,
number of cells n = 6 and electron energy E = 0.15 eV with the
corresponding de Broglie wavelength λ.
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Figure 4 The tunneling time τn as the number of cells n in a SL is
varied. (a) Saturation of τn for electron energies E = 0.15 eV and
E = 0.2 eV in the gap. (b) The energy is close to a resonant band-edge.
In this case, more resonances appear as n is increased with the energy
fixed. No Hartman effect can be inferred from this figure.

also obtained from Equation 2 with kL,H = ωnL,H/c and
with [7]

αR = cos kLa cos kHb − n2L + n2H
2nHnL

sin kLa sin kHb, (8)

αI = cos kLa sin kHb + n2L + n2H
2nHnL

sin kLa cos kHb. (9)

To see the effect of varying the size of the SL on the PT,
one has to be sure that such variation will still keep the
wavelength inside a photonic band gap. It was shown that
by increasing the number of cells, for fixed thicknesses of
layers and wavelength in a gap, the PT exhibits [7] the
observed Hartman effect [2,3]. However, this condition
will not be possible by varying arbitrarily the thicknesses
of the layers. The reason is that there is only a small range
of thicknesses that one can use to keep the chosen wave-
length to lie in a gap before going out of it and may even
reach resonances, as shown in Figure 5 where the PT oscil-
lates (with a band structure) and grows as a function of the
reduced thicknesses a/λ and b/λ. This is analogous to the
electron tunneling time shown in Figure 3.

Hartman effect in two Bragg gratings systems
We now consider the system that was taken in [10] as
thought to support the idea of a generalized Hartman
effect: the double Bragg gratings (DBG). Independent of
the approximate method used in that paper, we find that
assuming sin(kBa) = 0 (the only way to obtain the
reduced expressions of Table 1 in [10]) and still consid-
ering a as a variable are incongruous. Moreover, the idea
that the PT becomes independent of a is incompatible

Figure 5 The phase times τn as functions of the reduced
thicknesses. The phase times τn as functions of the reduced
thicknesses a/λ (a) and b/λ (b) for a superlattice (L/H/L)n made of
fused silica (L) (nL = 1.41) and titanium oxide (H) (nH = 2.22) for
λ = 702 nm.The oscillating behavior of τn with clear band structure is
far away of any Hartman effect.

with the Equation (4b) in their work, where a linear depen-
dence on a is reported. In the DBG, the gratings of length
Lo and refractive index n(z) = n0 + n1 cos(2kBz) are sep-
arated by a distance a. The values of a considered in the
experiment are indicated by arrows in Figure 6. The BG
wave equation

d2ψi(z)
dz2

+ k2n2(z)ψi(z) = 0, (10)

when ignoring the (n1/n0)2 term for n1/n0 � 1
(as in [10]), becomes the Mathieu equation, in which
solutions ψ1(z) = Se(u, v; kBz + π/2) and ψ2(z) =
So(u, v; kBz + π/2) are Mathieu functions [19] with u =
(1 + 2n1/n0) n20k2/k

2
B and v = 2√n0n1k/kB. The real and

imaginary parts of the (1,1) element of the transfer matrix
are

αR = A
cos kn0a

W 2 + B
sin kn0a
W 2

αI = C
cos kn0a

W 2 + D
sin kn0a
W 2 (11)
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Figure 6 The phase time as a function of the Bragg gratings separation. (a) The phase time as a function of the separation a between two
Bragg gratings, for incident λ = 1, 542 nm, kB = 6.1074/μm, n0 = 1.452, n1/n0 = 1.8 × 10−4, and Lo = 8.5 mm. (b, c) The PT is plotted as a
function of ω, for a = 42 mm. The phase time in (b) is the same as that in (c) but plotted from 0 to 10 ns to compare with Figure 2 in [10]. Arrows
indicate the as in [10].

withW the Wronskian and

A = θ2θ1 + μ2ν1 + ν2μ1 + χ2χ1

B = 1
kn0

(θ2ν1 + ν2χ1) − kn0(μ2θ1 + χ2μ1)

C = kn0(θ2μ1 + μ2χ1) − 1
kn0

(ν2θ1 + χ2ν1)

D = θ2χ1 + χ2θ1 − k2n20 μ2μ1 − 1
k2n20

ν2ν1. (12)

Here θ1 = θ(Lo, 0), θ2 = θ(2Lo + a, Lo + a) analogously
for χ1,2, μ1,2, ν1,2, with

θ(z2, z1) = ψ1(z2)
dψ2(z1)

dz
− ψ2(z2)

dψ1(z1)
dz

χ(z2, z1) = ψ1(z1)
dψ2(z2)

dz
− ψ2(z1)

dψ1(z2)
dz

μ(z2, z1) = ψ1(z1)ψ2(z2) − ψ2(z1)ψ1(z2)

ν(z2, z1) = dψ1(z2)
dz

dψ2(z1)
dz

− dψ2(z2)
dz

dψ1(z1)
dz

.
(13)



Simanjuntak and Pereyra Nanoscale Research Letters 2013, 8:145 Page 6 of 6
http://www.nanoscalereslett.com/content/8/1/145

Using parameters of Longhi et al. [10] for n0, n1, kB, and
Lo, the non-resonant gap becomes resonant as the gratings
separation increases. Though details are beyond the pur-
pose of this paper, we plot in Figure 6 the PT as a function
of the separation a for incident-field wavelength λ = 1542
nm, and as a function of the frequency ω, for a = 42 mm.
Recall that in [10], λ � 1, 550 nm was considered. While
the PT appears completely in graph (c), in (b) it is plotted
in a different range to compare with the experiment. The
resonant behavior of the PT with a and the absence of any
generalized Hartman effect are evident. Similar results are
obtained when λ = 2π/kB.

Conclusion
We have shown that the presumption of generalized Hart-
man effect for tunneling of particles and transmission of
electromagnetic waves is not correct.
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