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Design of a multi-walled carbon nanotube field
emitter with micro vacuum gauge
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Abstract

The variation of vacuum level inside a field emission device when electron is emitted from multi-walled carbon
nanotubes (MWCNTs) by electric field was measured where MWCNT gauge packaged with a vacuum device was
used to measure the degree of a vacuum until the end of the vacuum device life. It was found that the electrical
properties of MWCNTs altered with the degree of a vacuum. We fabricated MWCNT gauge which were printed and
pasted by the screen printer. In this paper, we report the successful detection of the ionization of gases in vacuum
state.
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Background
Carbon nanotube (CNT) is one of the most promising
materials for a field emitter due to its remarkable elec-
trical conductivity, chemical and mechanical stability,
and characteristics having unique structures such as high
aspect ratio [1-5]. Many researches have been highly de-
voted to developing a practical application for the
commercialization of field emitter, but there are still
some problems to be solved such as the lifetime of the
emitter [6-10]. There are many factors that affect the
emitter lifetime working in a state of vacuum. Among
them, outgassing generated during emission is inargu-
ably one of the most critical factors [11-13]. Especially,
some organic binders can still remain after firing when
the multi-walled carbon nanotube (MWCNT) emitter is
made in paste and be the source to release gas in the
vacuum panel. The outgassing can give a severe damage
to the vacuum microelectronic device by electrical arc-
ing and ion bombardment onto a cathode or an anode.
In addition to the physical damages, some gases can
cause chemical etching to the MWCNT emitter. These
highlight that controlling the outgassing is a key issue
for emission devices prepared from the paste.
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Therefore, it is very important to monitor the vacuum
level in a vacuum device in order to maintain satisfying
field emission properties. To measure the inner vacuum
of the device, the vacuum gauge should be integrated
to the vacuum device without affecting the device.
MWCNTs were used to fabricate the real time-
monitoring vacuum gauge that satisfies these conditions.
MWCNTs facilitate the fabrication of a microstructure
and this microstructure was used to build the micro
vacuum gauge that could be set up in the device. Here,
we demonstrate a simple screen-printed MWCNT de-
vice that combines the MWCNT field emission and
MWCNT-based vacuum gauge for the measurement of
the vacuum level. Also, the MWCNT vacuum gauge
packaged with a vacuum device is used to measure the
lifetime of the vacuum device.
Methods
The weight ratio of MWCNT/glass frit/indium tin oxide
(ITO) powder/Ethyl cellulose/α-terpineol was 1:10:2:9:100.
MWCNT powder grown by chemical vapor deposition
was used as an electron emission source and glass frit as
an inorganic binder to enhance the adhesion between
MWCNT and the substrate after firing. MWCNT field
emitters and the vacuum gauge were fabricated by the
screen-printing process, where the field emitters were
used as electron source. In the mixture of MWCNTs, the
organic binder was premixed through an ultra-sonication
for 30 min. Then, a three-roll milling process was carried
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Figure 1 Structure of MWCNT device and FE-SEM image of
MWCNT paste after heat treatment. (a) Structure of the MWCNT
device. (b) FE-SEM image of MWCNT paste printed on ITO glass
substrate after heat treatment.
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out for mixing and dispersion of MWCNTs in the organic
binder to form a polymer matrix. Mechanically well-
dispersed MWCNT paste was printed onto an ITO glass.
The residue of organic binder leads to problems such as
outgassing and arcing during a field emission measure-
ment. Therefore, organic materials in paste were removed
Ion gauge
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Figure 2 Schematic of the high vacuum chamber with tip-off system.
by drying the printed MWCNT paste in the furnace for
30 min at 400°C to obtain stable emission characteristics.
The gas sensing and field emission areas were printed

in cathode plate. The MWCNT paste film was fired at
350°C in nitrogen (N2) ambient in a furnace. Finally, the
MWCNTs in printed cathode layer are randomly distrib-
uted in a matrix material. Therefore, their emission
characteristics are poor compared to, for instance, highly
ordered arrays of vertically aligned MWCNTs. The sur-
face treatment of printed MWCNTs was performed for
vertical alignment as well as protrusion of MWCNTs
from the surface to increase of field emission current
and to improve the sensitivity of the vacuum gauge.
The proposed vacuum device is a vacuum gauge with a

field emitter structure, as shown in Figure 1. The
MWCNT vacuum gauge area was connected with a pair
of ITO electrodes on the glass plate of cathode to measure
the electrical parameters. In addition, the molybdenum
(Mo) patterned on glass was used as the anode plate. Two
glass plates (cathode and anode glasses) were assembled
by a distance of 240 μm. When the cathode plate was ap-
plied with high voltage, field emission current was
obtained. Figure 2 shows the schematic of the high vac-
uum chamber. To test the performance of the field emis-
sion and measurement of current level, during the
experiment, the two MWCNT vacuum devices, a high
vacuum chamber, and the tip-off system were connected
to the same vacuum level. MWCNT for the vacuum gauge
was packaged by tip-off through a vacuum system at a
pressure of 1.3 × 10-6 Torr. The vacuum gauge output
was measured by using a source meter (Keithley 2400,
Cleveland, OH, USA) and LabVIEW software (National
Instruments Corp., Austin, TX, USA).

Results and discussion
Figure 3a shows the field emission characteristic of printed
CNT before and after vacuum packaging. The turn-on
Pirani gauge
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Figure 3 Current versus voltage properties for the printed MWCNT paste film (a). The F-N plots (b).
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field required to reach a current density of 10 μA/cm2 was
2.54 V/μm (610 V) and 2.5 V/μm (600 V) with tip-off
(Sample 1) and vacuum chamber (Sample 2) processes, re-
spectively. Figure 3b shows the Fowler-Nordheim (F-N)
plot (ln(I/V2) versus 1/V) and nonlinear slopes. At an ap-
plied voltage of 950V, the emission current of MWCNT
film decreased from 0.9 to 0.7 mA after the tip-off. The
reasons for this could be explained by vacuum level change
due to outgassing inside the flat panel during tip-off
process.
Figure 4 exhibits the plot of the current versus time
of the packaged device which was loaded in the vac-
uum chamber tip-off system (Sample 1). In this
experiment, applied voltage to the vacuum gauge was
1 V. The measurement of the current was initiated
after saturation was reached by the rotary pump and
the turbo pump. As the gauge was heated by the tip-
off heater from 2,000 to 2,300 s, the current increased
after heater was turned on and decreased gradually
following the turning-off of the heater. This phenomenon
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Figure 4 Current changes of the MWCNT device during tip-off process.
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can be probably explained by the fact that there is limit in
the amount of outgas that can be removed by the pumps.
When the vacuum status approached to 1.2 × 10-6 Torr,
the device was tipped off. The tip-off process was as fol-
lows: glass tip was located on the heater, which was in the
vacuum chamber, and heated. The heater made the
temperature exceed the melting point of the glass in a few
minutes. At this instance, melted glass was held together
for a short time to close the glass tip and separated
from the vacuum pump. The outgas generated by
heating and field emission resulted in the increase of
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Figure 5 Variation of device current in the sequential step of field em
the current, i.e., the current increased upon exposure
to field emission outgases.
Figure 5 shows the current of the MWCNT vac-

uum gauge at the device versus time inside high
vacuum chamber (Sample 2). From Figure 4, it was
found that vacuum level was changed when heat
was generated at the tip-off by using the vacuum
gauge. Therefore, we measured the change of the
current as vacuum level was changed without tip-off, and
the device was sealed for more precise measurement.
Pirani gauge, a low-level vacuum gauge, provided that the
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Figure 6 Normalized ion current versus chamber pressure for air.
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current was decreased at 450 s when the rotary pump
was turned on. After the turbo pump was turned on,
significant change in the current was observed. After
2,900 s, the vacuum level approached 9.8 × 10-7 Torr,
and outgassing occurred in the chamber. It seemed that
the device current changed because these gases
resulted from outgassing adsorbed onto the MWCNTs.
The vacuum level was changed from 9.8 × 10-7 to 2.8 ×
10-5 Torr after emission. The current of the vacuum
gauge was increased when exposed to field emission
outgases.
The sensitivity K of the ion gauge can be repre-

sented by K = Ii/IeP, where Ii is the ion current, Ie
is emission current, and P is the pressure. The
anode voltage and the collector voltage were biased
to 800 V and −10 V, respectively. As shown in
Figure 6, the gauge showed excellent measurement
linearity between normalized ion current (Ii/Ie) and
vacuum pressure for air. It can be seen that the ra-
tio of the ion current to the emission current is lin-
ear with respect to the air pressure in the range of
10-7 to 1 Torr. The sensitivity derived from linear
fits of the data was calculated to be approximately 2
Torr-1, which is smaller than that of the commercial
Bayard-Alpert gauge (BAG) in the range of 8 to 45
Torr-1. The gauge sensitivity is dependent on the
structure of the vacuum sensor and electrical poten-
tial (typical value of 150 to 200 V). The sensitivity
of the MWCNT-emitter vacuum gauge was lower
compared to the BAG due to short electron paths
and higher anode voltage (800 V).
Conclusions
In this work, the change in inner vacuum of the
vacuum-packaged emitter device and the current of
printed MWCNT ionization vacuum gauge by field
emission were explored. The MWCNT emitter showed
excellent emission characteristics under vacuum pres-
sure below 10-6 Torr. The MWCNT source vacuum
gauge presented good measurement linearity from 10-7

to 1 Torr for air. This MWCNT-based gauge is expected
to find several applications such as ultrahigh vacuum
systems, vacuum inside sealed devices, and field emis-
sion devices.
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