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Abstract

Self-assembled layers of vertically aligned titanium nanotubes were fabricated on a Ti disc by anodization.
Pamidronic acids (PDAs) were then immobilized on the nanotube surface to improve osseointegration. Wide-angle
X-ray diffraction, X-ray photoelectron microscopy, and scanning electron microscopy were employed to characterize
the structure and morphology of the PDA-immobilized TiO, nanotubes. The in vitro behavior of osteoblast and
osteoclast cells cultured on an unmodified and surface-modified Ti disc was examined in terms of cell adhesion,
proliferation, and differentiation. Osteoblast adhesion, proliferation, and differentiation were improved substantially
by the topography of the TiO, nanotubes, producing an interlocked cell structure. PDA immobilized on the TiO»
nanotube surface suppressed the viability of the osteoclasts and reduced their bone resorption activity.
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Background
The clinical success of orthopedic and dental implants de-
pends on the interaction between the implanted surface
and bone tissues and, consequently, their osseointegration
[1]. Titanium implants are used widely in orthopedic sur-
gery and dentistry for their favorable biocompatibility and
corrosion resistance [2,3]. Surface modification of the im-
planted material is a critical factor for tissue acceptance
and cell survival. Among three different crystalline phases
of titania (anatase, rutile, and amorphous titania), anatase
phase is more favorable for cell adhesion and proliferation
due to lower surface contact angles and/or wettability [4].
Several surface modification techniques, i.e., sol-gel tech-
niques, chemical (alkali/acid) treatment, anodization,
plasma spray, hydroxyapatite-coated surface, and self-
assembled monolayers, have been developed and are cur-
rently used with the aim of enhancing the bioactivity of
pure Ti surface [5-12].

Over the last decade, bisphosphonates (BPs) have
attracted increasing attention as a surface modifier for
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orthopedic and dental implants. Bisphosphonates are
stable pyrophosphates that prevent the loss of bone mass
and are used widely to treat a range of diseases with excess
bone resorption, such as bone metastasis, hypercalcemia
of a malignancy, and Paget’s disease [13-16]. In orthopedic
implants, the use of BP is expected to promote osteogen-
esis at the bone tissue/implant interface by inhibiting the
activity of osteoclasts. BPs were reported to inhibit the dif-
ferentiation of the osteoclast precursor and the resorptive
activity of mature osteoclasts [17,18]. Furthermore, BPs
alter the morphology of osteoclasts, such as a lack of ruf-
fled border and disruption of the actin ring, both in vitro
and in vivo [19,20]. Garcia-Moreno et al. reported that
BPs enhance the proliferation, differentiation, and bone-
forming activity of osteoblasts directly [21]. Recently,
pamidronic acid, a nitrogen-containing bisphosphonate,
was reported to conjugate the titanium surface and stimu-
late new bone formations around the implant both in vitro
and in vivo, which contribute to the success of the implant
technology [22,23].

Besides chemical surface modifications, nanometric-
scale surface topography and roughness of the biomate-
rial is also recognized as a critical factor for tissue
acceptance and cell survival. Nanoscale topography af-
fects cell adhesion and osteoblast differentiation [24-26].
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It was reported that the fabrication of TiO, nanotubes
on titanium implants increased new bone formation sig-
nificantly [27]. To study the effect of the nanopore size
on bone cell differentiation and proliferation, Park et al.
used vertically aligned TiO, nanotubes with six different
diameters between 15 and 100 nm. They reported 15 nm
to be the optimal length scale of the surface topography
for cell adhesion and differentiation [28]. TiO, nanotubes
can modulate the bone formation events at the bone-
implant interface to reach a favorable molecular response
and osseointegration [29]. Immobilization of bone mor-
phogenetic protein 2 (BMP-2) on TiO, nanotubes stimu-
lates both chondrogenic and osteogenic differentiation of
mesenchymal stem cells (MSCs). Surface-functionalized
TiO, nanotubes with BMP-2 synergistically promoted
the differentiation of MSCs [30,31]. Furthermore, TiO,
nanotubes can control the cell fate and interfacial osteo-
genesis by altering their nanoscale dimensions, which have
no dependency or side effects [32].

In this study, dual-surface modifications, i.e., nanometric-
scale surface topography and chemical modification were
examined to improve the osteogenesis of titanium implants.
First, TiO, nanotubes were fabricated on a Ti disc and
pamidronic acid (PDA) was then immobilized on the nano-
tube surface. The behavior of osteoblasts and osteoclasts on
the dual-surface modified and unmodified Ti disc surface
were compared in terms of cell adhesion, proliferation, and
differentiation to examine the potential for use in bone
regeneration and tissue engineering. The motivation for the
immobilization of PDA on nanotube surface was that
PDA, a nitrogen-containing bisphosphonate, suppresses
the osteoclast activity and improves the osseointegration
of TiO, nanotubes.
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Methods

Nanotube formation

TiO, nanotubes were prepared on a Ti disc surface by
an anodizing method in a two-electrode (distance be-
tween the two electrodes is 7 c¢cm) electrochemical cell
with platinum foil as the counter electrode at a constant
anodic potential of 25 V and current density of 20 V, in
a 1 M H3;PO, (Merck, Whitehouse Station, NJ, USA)
and 0.3 wt.% HF (Merck) aqueous solution with 100-
rpm magnetic agitation at 20°C. The Ti disc specimen
was commercially pure titanium grade IV. The specimen
was cleaned ultrasonically in ethanol for 10 min and
chemically polished in a 10 vol.% HF and 60 vol.% H,O,
solution for 3 min. All electrolytes were prepared from
reagent-grade chemicals and deionized water. Heat treat-
ment of TiO, nanotubes was carried out for 3 h at
350°C in air. The morphology of the TiO, nanotubes
was observed by field emission scanning electron mi-
croscopy (FE-SEM; JSM 6700F, Jeol Co., Akishima-shi,
Japan), and their crystal structure was analyzed by wide-
angle X-ray diffraction (WAXD, PANalytical’s X'PertPro,
Almelo, The Netherlands).

Immobilization of PDA on a nt-TiO, disc

The immobilization of PDA on the TiO, nanotube
(nt-TiO,) disc was carried out in three steps. First, the
carboxyl group (-COOH) was introduced to the nt-TiO,
disc surface by a reaction of aminopropyl triethoxysilane
(APTES; Sigma-Aldrich, St. Louis, MO, USA) with L-
glutamic acid y-benzyl ester (Sigma-Aldrich) followed by
alkaline hydrolysis. Subsequently, PDA was immobilized
on the carboxyl groups of the nt-TiO, disc surface using
water-soluble carbodiimide (WSC). Briefly, a nt-TiO,
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Figure 1 Schematic diagram showing the PDA-immobilized TiO, nanotubes.




Koo et al. Nanoscale Research Letters 2013, 8:124
http://www.nanoscalereslett.com/content/8/1/124

disc (1 x 1 cm?) was immersed in an APTES-water solu-
tion (1:9) and sonicated for 30 min. The disc was then
heated to 95°C for 2 h with gentle stirring. The silanized
nt-TiO, disc was washed with water in an ultrasonic
cleaner and dried under reduced pressure and room
temperature to produce a primary amine-coupled TiO,
nanotube disc (nt-TiO,-A). The nt-TiO,-A was then
immersed in a beaker containing aqueous solution of L-
glutamic acid y-benzyl ester (23.93 mg in 100 ml water)
and WSC solution (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide hydrochloride (0.5 g, 0.25 wt.%; Sigma-
Aldrich) and N-hydroxysuccinimide (0.5 g, 0.25 wt.%;
Sigma-Aldrich) dissolved in 20 ml water) and stirred
gently for 5 h at 4°C followed by alkaline hydrolysis to
obtain the carboxyl functional TiO, nanotube disc (nt-
TiO,-G). The nt-TiO,-G was immersed in a solution of
pamidronic acid disodium salt hydrate (10™* M, 100 ml;
Sigma-Aldrich) and WSC and stirred gently for 12 h at
4°C to obtain a PDA-immobilized nt-TiO, disc (nt-
TiO,-P; Figure 1). The nt-TiO,-P was then washed in
distilled water and dried. The chemical composition of
the nt-TiO,-P surface was analyzed by electron spectros-
copy for chemical analysis (ESCA, ESCA LAB VIG
Microtech, East Grinstead, UK) using Mg Ka radiation
at 1,253.6 eV and a 150-W power mode at the anode.

Osteoblastic cell culture

To examine the interaction of the surface-modified and
unmodified TiO, discs (Ti, nt-TiO,, and nt-TiO,-P) with
osteoblasts (MC3T3-E1), the circular TiO, discs were fit-
ted to a 24-well culture dish and immersed in a Dulbecco’s
modified Eagle’s medium (DMEM) containing 10% fetal
bovine serum (FBS; Gibco, Invitrogen, Carlsbad, CA, USA).
Subsequently, 1 mL of the MC3T3-E1 cell solution (3 x 10*
cells/mL) was added to the TiO, disc surfaces and incu-
bated in a humidified atmosphere containing 5% CO, at
37°C for 4 h, 2 days, 3 days, and 4 days. After incubation,
the supernatant was removed and the TiO, discs were
washed twice with phosphate-buffered silane (PBS; Gibco)
and fixed in a 4% formaldehyde aqueous solution for 15
min. The samples were then dehydrated, dried in a critical-
point drier, and sputter-coated with gold. The surface
morphology of the TiO, disc was observed by FE-SEM.

To examine the cytotoxic effects of PDA, after 2 days of
culture, the osteoblast cells were suspended in PBS with a
cell density of 1 x 10° to 1 x 10° cells/mL. Subsequently,
200 pL of a cell suspension was mixed with a 100-uL assay
solution (10 pL calcein-AM solution (1 mM in DMSO)
and 5 pL propidium iodide (1.5 mM in H,O) was mixed
with 5 mL PBS) and incubated for 15 min at 37°C. The
cells were then examined by fluorescence microscopy
(Axioplan 2, Carl Zeiss, Oberkochen, Germany) with 490-
nm excitation for the simultaneous monitoring of viable

and dead cells.
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The proliferation of osteoblasts on the Ti, nt-TiO, and
nt-TiO,-P discs was determined by a 3-(4,5-dimethylazol-
2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay.
Briefly, MC3T3-E1 osteoblasts were seeded at a concentra-
tion of 3 x 10* cells/mL on the Ti, nt-TiO,, and nt-TiO,-P
disc surfaces, which fitted in a 24-well plate, and cell prolif-
eration was monitored after 2 and 3 days of incubation. A
MTT solution (50 pL, 5 mg/mL in PBS) was added to each
well and incubated in a humidified atmosphere containing
5% CO, at 37°C for 4 h. After removing the medium, the
converted dye was dissolved in acidic isopropanol (0.04 N
HCl-isopropanol) and kept for 30 min in the dark at room
temperature. From each sample, the medium (100 pL) was
taken, transferred to a 96-well plate, and subjected to ultra-
violet measurements for the converted dye at a wavelength
of 570 nm on a kinetic microplate reader (ELx800,
Bio-Tek® Instruments, Inc., Highland Park, VT, USA).

X50,000 WD 6.0mm 100nm

WO 6.0mm

5.0kV ®50,000 100nm

Figure 2 Typical (a) surface and (b) cross-sectional FE-SEM
images of TiO, nanotubes. The nanotubes were formed at an applied
potential of 25 V for 2 h'in 1 M H3PO, + 0.3 M HF solution at 20°C.
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Figure 3 XRD patterns of (a) Ti substrate and (b) heat-treated
TiO, nanotubes for 3 h at 350°C in air. The nanotubes were
formed at an applied potential of 25 V for 2 h in 1 M H3PO4 + 0.3 M
HF solution at 20°C.

The calcium deposition of MC3T3-E1 cells cultured
was studied by Alizarin Red S staining. The cells were
cultured for 15 days on Ti, nt-TiO,, and nt-TiO,-P discs
under the same condition as described earlier. After in-
cubation, the cells were washed with PBS, fixed in 10%
formaldehyde for 30 min, and then triple washed with
distilled water for 10 min. The samples were then
treated with Alizarin Red S stain solution (1 mL) and in-
cubated for 20 min. After washing the sample with dis-
tilled water four times, the digital images of the stained
cultures were obtained (Nikon E 4500, Shinjuku, Japan).

Differentiation of macrophage

For osteoclastic differentiation, hematopoietic stem cells
(HSC, name of cell line) at a cell density of 3 x 10* cells/mL
were cultivated on Ti, nt-TiO,, and nt-TiO,-P discs in
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Figure 4 XP spectra of nt-TiO, (curve x), nt-TiO,-A (curve y),

and nt-TiO,-P (curve z).
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Table 1 Chemical composition of nt-TiO, and surface-
modified nt-TiO,

Substrate Atomic percent

0o C Ti N Si P
nt-TiO, 564 222 20.5 09 - -
nt-Ti0,-A 499 27.5 16.3 32 3.1 -
nt-TiO,-P 583 16.1 216 13 08 1.9

DMEM containing 10% FBS, 50 ng/mL mouse recom-
binant receptor activator of nuclear factor kappa-B
ligand (RANKL), and 50 ng/mL macrophage colony-
stimulating factors from mouse (m-CSF). The culture
medium was changed every 2 days.

Tartrate-resistant acid phosphatase staining and solution
assays

To analyze osteoclastic differentiation, the cells after 4
days of culture in the differentiation medium were washed
once with PBS and fixed with 10% formalin (50 pL,

~
Al\

Ti-A

15.0kV x50k

Figure 5 FE-SEM images of (a) nt-TiO, and (b) nt-TiO,-P.
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neutral buffer) at room temperature for 5 min. After fix-
ation, cells were washed with distilled water and incubated
with a substrate solution (3 mg of chromogenic substrate
with 5 mL tartrate-containing buffer (pH 5.0)) for 30 min
at 37°C. The cell images were obtained by fluorescence
microscopy.

For immunocytochemistry, the HSCs were cultivated
in a differentiation medium and fixed and immuno-
stained after 4 days with 4',6-diamidino-2-phenylindole
(DAPI) and (tetra-methyl rhodamine isothiocyanate)-
phalloidin (TRICK), as described previously [33]. Multi-
nucleated cells containing more than three nuclei were
considered differentiated osteoclast-like cells. The cell
images were obtained by fluorescence microscopy. To
confirm the viability of the differentiated macrophages
on nt-TiO, and nt-TiO,-P, the cells after 4 days of
culture were stained with calcein-AM and propidium
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iodide, as described in the section for the osteo-
blastic cell culture, and examined by fluorescence
microscopy.

Results and discussion
Crystal structure of TiO, nanotubes and surface
characterization of PDA-immobilized nt-TiO,
After anodization and annealing at 25 V and 350°C, re-
spectively, the morphology of the highly ordered TiO,
nanotube array was examined by FE-SEM (Figure 2) to
ascertain the nanotube dimensions. The mean outer di-
ameters of the nanotubes were 100 nm. WAXD analysis
(Figure 3) showed that the anodized nanotubes were
amorphous, which transformed to anatase after heat
treatment at 350°C [29].

ESCA was used to determine the immobilization of
PDA on the nanotube surface (Figure 4). Table 1 lists the

-
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Figure 6 FE-SEM images of adhering osteoblasts on (a) Ti, (b) nt-TiO,, and (c) nt-TiO,-P for 4 h.
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elements detected by quantitative analysis. The N 1s and
P 2p photoelectron signal is the marker of choice for
confirming PDA absorption. Three photoelectron signals
were observed for nt-TiO, (Figure 4, curve x) correspond-
ing to C 1s (binding energy, 285 eV), Ti 2p> (binding
energy, 459 eV), and O 1s (binding energy, 529 eV). In
contrast, five photoelectron signals were observed for
nt-TiO,-A that correspond to C 1s, Ti 2p°, O 1s, N 1s
(binding energy, 401 eV), and Si 2s (binding energy,
154 eV). On the other hand, one additional photoelec-
tron signal was observed for nt-TiO,-P, which was
assigned to P 2p (binding energy, 133.7 eV). The very
weak N 1s photoelectron signal observed for nt-TiO,
might be due to the entrapment of atmospheric nitrogen
and impurity. The binding energies of the N 1s and P 2p
photoelectrons obtained from nt-TiO,-P were assigned to
NH; (400.6 to 401.9 V) and PO3 ™ (133.7 &V), respectively
[34]. The presence of two new elements, N and P, in
nt-TiO,-P confirmed the absorption of PDA on the nano-
tube surface. The morphology of the TiO, nanotubes was
not significantly changed after immobilization of PDA
(Figure 5).

Interaction of bone cells with the surface-modified TiO,
nanotubes

Adhesion, proliferation, and differentiation of osteoblasts
To examine the cell behavior on the unmodified and
modified TiO, surface, the osteoblasts were cultured on
sand-blasted Ti, nt-TiO,, and nt-TiO,-P discs for 4 h
and observed by FE-SEM (Figure 6). The osteoblast cells
appeared as a dark phase in the FE-SEM image. After
4 h of culture, the osteoblast cells were mostly circular
and barely spread on the Ti disc (Figure 6a). Osteoblast
cell adhesion, spreading, and growth on the nt-TiO, and
nt-TiO,-P surfaces (Figure 6b,c) were enhanced compared
to those on the control Ti disc, suggesting a good cell
compatibility of nt-TiO, and nt-TiO,-P.

Furthermore, the cytotoxic effect of PDA on osteoblast
cells was analyzed by fluorescence microscopy using
calcein-AM (green) and propidium iodide (red) as the
markers which stain live and dead cells, respectively.
Calcein-AM is highly lipophilic and cell membrane per-
meable. The calcein generated from the hydrolysis of
calcein-AM by cytosolic esterase in a viable cell emits
strong green fluorescence. Therefore, calcein-AM only
stains viable cells. In contrast, propidium iodide, a
nucleus-staining dye, can pass through only the disor-
dered areas of the dead cell membrane and intercalates
with the DNA double helix of the cell to emit a red
fluorescence (excitation, 535 nm; emission, 617 nm).
After 2 days of culture, green fluorescence areas were
observed on all Ti, nt-TiO,, and nt-TiO,-P discs
(Figure 7), suggesting the presence of live cells. A larger
number of green fluorescence areas were identified on the
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Figure 7 Fluorescence microscopy images of osteoblast cells
marked with calcein-AM (green) and propidium iodide (red). The

cells were cultured on (a) Ti, (b) nt-TiO,, and (c) nt-TiO,-P for 2 days.

nt-TiO, and nt-TiO,-P discs (Figure 7b,c) than on the Ti
discs (Figure 7a), indicating that the proliferation of osteo-
blasts was accelerated on nt-TiO, and nt-TiO,-P than on
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Figure 8 MTT assay with absorbance as a measure of cell
proliferation from osteoblast cells. The cells were cultured on Ti,
nt-TiO,, and nt-TiO,-P for different culture times.

the Ti disc. The absence of red fluorescence in nt-TiO,-P
(Figure 7c) suggests that the immobilized PDA does not
have any cytotoxic effect on osteoblast cells.

The viability of osteoblast cells on Ti, nt-TiO,, and
nt-TiO,-P discs at 3 days was analyzed by MTT assay.
Cell proliferation on the nt-TiO, and nt-TiO,-P discs
was significantly (P < 0.05) higher than that on the Ti
disc (Figure 8) after 3 days of culture. This suggests
that nt-TiO, and nt-TiO,-P provide a favorable surface
for osteoblast adhesion and proliferation. The high
osteoblast adhesion and proliferation on nt-TiO, and
nt-TiO,-P were attributed to the discrete nanostructure

(@ (b)

Figure 9 Alizarin Red S staining of MC3T3-E1 osteoblasts. The
cells were cultured on (a) Ti, (b) nt-TiO, and (c) nt-TiO»-P for 15
days: the calcium-containing area was stained in red.
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of the disc surface with gaps between the adjacent
nanotubes (Figure 2). This typical subdivision structure
minimized the interfacial stresses between the nano-
tube surface and osteoblasts and can allow the passage
of body fluid that supplies the nutrients for cell growth.
Moreover, vertically aligned TiO, nanotubes have much
larger surface areas than a flat Ti surface and contrib-
ute to the interlocked cell configuration [27,29].
Differentiation of osteoblast cells is one of the key pro-
cesses for bone regeneration [35]. The in vitro differenti-
ation of MC3T3-E1 into osteoblast phenotype was
qualitatively observed by Alizarin Red S staining. Forma-
tion of bone nodule is one of the markers specific to bone
cell differentiation. In the Alizarin Red S assay, calcifica-
tion areas in the cells become stained in red. After staining
with Alizarin Red S, intense dark red color was observed
for the cells cultured on nt-TiO, and nt-TiO,-P discs for
15 days (Figure 9b,c). However, the intensity of the red

50 pm

Figure 10 Fluorescence microscopy images of (a) TRAP and (b)
DAPI and phalloidin staining. The macrophages differentiated
into osteoclasts.
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color is less for the cells cultured on the Ti disc (Figure 9a),
suggesting that cells were differentiated more on the
nt-TiO, and nt-TiO,-P discs than on the Ti disc. These
results mean that the nanotube structure is useful to
accelerate the differentiation of osteoblasts.

Differentiation of macrophages into osteoclasts and
viability on nanotube surface
To examine the viability of osteoclast cells on the PDA-
immobilized nt-TiO, surface, HSCs from mice were
seeded on nt-TiO, and nt-TiO,-P and induced to differ-
entiate into multinucleated osteoclast-like cells using
standard m-CSF and RANKL procedures. A series of
markers were analyzed during the differentiation of the
macrophage cells to osteoclasts. Tartrate-resistant acid
phosphatase (TRAP) is a marker of osteoclasts and
shows a red color when stained with tartrate and
chromogenic substrate. TRAP-positive cells were ob-
served as early as 4 days of differentiation (Figure 10).
After 4 days of differentiation, more than 50% of the
macrophages differentiated into osteoclasts. Further-
more, the nucleus and actin were stained with DAPI
(blue) and TRICK (red), respectively, to confirm the
differentiation of the macrophages into osteoclasts. The
presence of multinucleated giant cells (osteoclast cells)
along with mononucleated macrophage cells suggests
that macrophage cells were partially differentiated into
osteoclasts (Figure 11).

On the nt-TiO, surface, differentiated osteoclasts
stained with calcein-AM and propidium iodide showed a
green color indicating the good viability of the cells. In
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contrast, along with green fluorescence, red fluorescence
was also observed on the nt-TiO,-P surface, which sug-
gests that some osteoclast cells died in contact with
PDA (immobilized PDA did not show any cytotoxic
effect on macrophage cells, Additional file 1: Figure S1).
Osteoclasts normally destroy themselves by apoptosis, a
form of cell suicide. PDA encourages osteoclasts to
undergo apoptosis by binding and blocking the enzyme
farnesyl diphosphate synthase in the mevalonate
pathway [36]. Thus, the viability of osteoclasts was
suppressed on the nt-TiO,-P surface, leading to a de-
crease in bone resorption activity and an increase in
osseointegration and bone maturation.

Conclusion

TiO, nanotubes were successfully fabricated on Ti surface,
and pamidronic acids were immobilized on the TiO,
nanotube surface. The adhesion and proliferation of osteo-
blasts were accelerated on the TiO, nanotubes and
pamidronic acid-conjugated TiO, nanotubes compared to
the Ti disc only. Macrophages were partially differentiated
into osteoclasts by the addition of RANKL and m-CSF.
The viability of osteoclasts was suppressed on the
pamidronic acid-conjugated TiO, nanotubes. This study
has demonstrated that immobilization of PDA might be a
promising method for the surface modification of TiO,
nanotube for use as dental and orthopedic implants. An
in vivo study will be necessary to evaluate the potential of
pamidronic acid-conjugated TiO, nanotube as a thera-
peutic bone implant.

osteoclasts on (a) nt-TiO, and (b) nt-TiO,-P for 4 days.

propidium iodide (dead cell)

Figure 11 Fluorescence microscopy images of calcein-AM (green) and propidium iodide (red). The macrophages differentiated into

—_—
50 um
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Additional file

Additional file 1: Figure S1. Fluorescence microscopy images of
macrophage cells (calcein-AM and propidium iodide stained) cultured on
NETiO,P.
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