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Abstract

Metal contact to SiC is not easy to modulate since the contact can be influenced by the metal, the termination of
the SiC, the doping, and the fabrication process. In this work, we introduce a method by inserting a thin Al2O3 layer
between metal and SiC to solve this problem simply but effectively. The Al2O3/n-SiC interface composition was
obtained with X-ray photoemission spectroscopy, and the electrical properties of subsequently deposited metal
contacts were characterized by current–voltage method. We can clearly demonstrate that the insertion of Al2O3

interfacial layer can modulate the current density effectively and realize the transfer between the Schottky contact
and ohmic contact.

Keywords: Contact resistance, Schottky barrier height, SiC, Atomic layer deposition
Background
Silicon carbide is a promising material for numerous
electronic applications due to its wide bandgap, high
breakdown electric field, high thermal conductivity, and
high saturation velocity [1]. These excellent properties
make SiC suitable for high-temperature, high-power, and
high-frequency applications. For high-performance and
high-frequency devices in these applications, metal/SiC
contact plays very important roles. However, the trad-
itional method for fabricating Schottky contact and
ohmic contact are so different, and it will unavoidably
add to the processing difficulty and cost [2].
The Schottky barrier height (SBH) is the key factor

that determines whether the electrical behavior is an
ohmic contact or Schottky contact: a low SBH is neces-
sary to create a good ohmic contact, while a large SBH
is required to form a good Schottky contact. According
to the thermionic emission model [3], the direct reflec-
tion of the SBH is the reverse current density, and there-
fore, by controlling the Schottky barrier height, we can
modulate the current density and acquire the needed
contact type without modifying the fabrication process.
In a previous study, Connelly et al. [4] have raised a

method to reduce the SBH of the metal/Si contact by
using a thin Si3N4 through the creation of a dielectric
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dipole [5]. Similar researches have been dedicated to the
study of the SBH modulation on Ge [6-9], GaAs [10],
InGaAs [10,11], GaSb [12], ZnO [13], and organic ma-
terial [14] by inserting different dielectrics or bilayer di-
electrics. According to the bond polarization theory [15],
an electronic dielectric dipole is formed between the
inserted insulator and semiconductor native oxide which
results in a shift of the SBH, as Figure 1 depicts. The ori-
gin of the dipole formation at the dielectric/SiO2 inter-
face is described in Kita’s model [16], and in this model,
the areal density difference of oxygen atoms at the di-
electric/SiO2 interface is the driving force to form the di-
pole. Since the areal density of oxygen atoms (σ) of
Al2O3 is larger than that of SiO2, the σ difference at the
interface will be compensated by oxygen transfer from
the higher-σ to the lower-σ oxide which creates oxygen
vacancies in the higher-σ oxide (Al2O3) and negatively
charged centers in the lower-σ oxide (SiO2), and the cor-
responding direction of the dipole moment is from SiO2

to Al2O3. As a result, this dipole is a positive dipole
which can reduce the SBH and therefore increases the
current density. As the thickness of the inserted insula-
tor increases, it becomes more difficult for the current
to tunnel through the insulator, and the tunneling bar-
rier is the dominant factor of the total barrier height,
which decreases the current density in the end.
In this work, we demonstrate the modulation of the

current density in the metal/n-SiC contact by inserting a
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Figure 1 A schematic band diagram of a shift in the metal/semiconductor’s high barrier height. This is done by forming an electronic
dielectric dipole between the insulator and the oxide of semiconductor in accordance with the bond polarization theory.

Figure 2 Schematic diagram of MIS structure and cross-sectional
TEM of Al/Al2O3/SiC. (a) A schematic diagram of the MIS structure.
(b) The cross-sectional TEM of the Al/Al2O3/SiC contact, showing that
Al2O3 was deposited uniformly as a fully amorphous film.
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thin Al2O3 layer into a metal-insulator-semiconductor
(MIS) structure. Al2O3 is chosen as the interfacial insu-
lator for its large areal oxygen density (σ) which means
that the formation of dipole is much stronger and shifts
the SBH more effectively than that induced by other in-
sulators based on the bond polarization theory [15] and
Kita’s model [16]. As for the choice of metal, aluminum
(Al) is suitable due to its low work function (4.06 to 4.26
eV) for the investigations of the Fermi level shift toward
the conduction band of SiC (electron affinity = 3.3 eV).
The analysis of the Al2O3/SiC interface during the

formation of Al2O3 was obtained with X-ray photoemis-
sion spectroscopy (XPS), and the electrical properties of
Al/ Al2O3/SiC with different thicknesses of the inserted
Al2O3 were characterized by current–voltage (I-V)
method. Since the current density as well as the contact
resistance was found to be sensitive to the Al2O3 thick-
ness, we carefully varied the Al2O3 thickness from 0.97
to 6.3 nm and finally have acquired the experiment re-
sults that can describe the modulation of current dens-
ity by changing the thickness of the insulator.

Methods
We prepared an Al/Al2O3/SiC MIS structure on n-type
C-terminated 6H-SiC with a carrier concentration of 1 ×
1016 cm−3 epitaxially deposited by metal-organic chem-
ical vapor deposition. Firstly, samples were cleaned in
solutions of detergent, H2SO4/H2O (1:4), NH4OH/
H2O2/H2O (1:1:5), and HCl/H2O2/H2O (1:1:6), and
treated with HF/H2O (1:50) solution, followed by rinsing
in deionized water to remove native oxide at the surface.
Secondly, the Al2O3 film was then deposited using
trimethylaluminum and H2O as precursors at 200°C by
atomic layer deposition (ALD). Various thicknesses of
Al2O3 were achieved by changing the number of ALD
cycles, and nine samples were prepared with the Al2O3

thicknesses ranging from 0.97 to 6.3 nm. Finally, for all
the samples, 100-nm Al was evaporated onto the Al2O3
surface as the top contact through shadow masks, and
back side contact was also formed through the evapor-
ation of Al. The MIS structure is depicted in Figure 2a.
Figure 2b is a cross-sectional transmission electron
microscope (TEM) image of Al/Al2O3/SiC which pre-
sents that Al2O3 was uniformly deposited as a fully
amorphous film.
In order to determine the generation of SiO2 and the

content ratio of SiO2 and SiC, the XPS method is used.
XPS experiments were carried out on a RBD-upgraded
PHI-5000C ESCA system (PerkinElmer, Waltham, MA,
USA) with Mg Kα radiation (hν = 1,253.6 eV), and the base
pressure of the analyzer chamber was about 5 × 10−8 Pa.
Ar ion sputtering was performed to clean the sample in
order to alleviate the influence of carbon element in the
air. Samples were directly pressed to a self-supported disk
(10 × 10 mm) and mounted on a sample holder, then
transferred into the analyzer chamber. The whole spectra
(0 to 1,100 eV) and the narrow spectra of Si 2p, O 1s,
C 1s, and Al 2p with much high resolution were both
recorded, and binding energies were calibrated using the
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containment carbon (C 1s = 284.6 eV). Since the XPS
spectra obtained consist of numerous overlapping peaks,
curve fitting is necessary to separate the peaks from
each other. The binding energies for the species were all
correlated to the binding energies determined from stan-
dards in the handbook of XPS [17] and earlier studies
[18,19]. These standards were also used to determine
the full width at half-maximum (FWHM) and band type
for curve fitting of multicomponent spectra, and it was
found that the Gaussian distribution was the best model.
Background removal was adopted according to the Shirley
model and performed prior to curve fitting.

Results and discussion
Figure 3 describes the Si 2p3 core-level spectra of the
four samples with the Al2O3 thicknesses of 1.3, 1.98,
2.79, and 3.59 nm, respectively. It is clear that the Si 2p3
spectrum can be fitted with two Gaussian peaks which
correspond to Si-C bonds (100.9 eV, FWHM = 2.27 eV)
Figure 3 Si 2p XPS spectra of samples 1, 2, 3, and 4 with varying thic
with Al2O3 thickness of 1.98 nm. (c) Sample 3 with Al2O3 thickness of 2.32 nm.
represents the original data of Si 2p spectrum; the red solid line is for the fitting
the magenta dash-dot line stands for the Gaussian peak of Si-O bonds. Both G
and Si-O bonds (102.8 eV, FWHM = 2.27 eV). As illus-
trated in Figure 3a,b,c,d, all the Si 2p3 spectrum samples
have a Si-C peak which associates with SiC from the
substrate. Si-O species indicates that SiO2 exists at the
Al2O3/SiC interface. This SiO2 is probably generated
from SiC-heated substrate oxidized by Al2O3 since all
the samples have been completely cleaned before the
ALD process. Figure 4 demonstrates the evolution in the
content ratio of SiO2 and SiC which is calculated by
using the area of Gaussian fitting curve of the Si-O bond
divided by the area of Gaussian fitting curve of the Si-C
bond. It clearly and deliberately shows that the content
of SiO2 oxidized by Al2O3 reaches an increase at the
Al2O3 thickness of 1.98 nm. The content ratio of SiO2/
SiC stays nearly at 17% in the Al2O3 film with the thick-
ness beyond 1.98 nm. However, the content ratio of
SiO2/SiC increases to 21.58% at the Al2O3 thickness of
2.32 nm and almost remains around 21.89% at the
Al2O3 thickness of 3.59 nm and thicker samples. The
knesses. (a) Sample 1 with Al2O3 thickness of 1.3 nm. (b) Sample 2
(d) Sample 4 with Al2O3 thickness of 3.59 nm. The black solid line
curve. The blue dash line stands for the Gaussian peak of Si-C bonds and

aussian peaks were separated from the core-level Si 2p spectrum.



Figure 4 The four samples’ content ratio of SiO2 and SiC. The
content ratio transfers to the area ratio of Si-O bond’s fitting curve
and Si-C bond’s fitting curve.

Figure 6 Schematic of RC versus tox for MIS contact by inserting
Al2O3. RC ratios are taken relative to the Schottky diode case.
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content ratio of SiO2/SiC rises by about 24% from the
1.98-nm sample to the 2.32-nm sample, which is pos-
sibly due to the fact that the well-oxidized SiO2 begins
to generate when the Al2O3 thickness is thicker than
1.98 nm.
The I-V characteristics of the Al/Al2O3/SiC MIS struc-

ture were measured by the circuit connections of the
back-to-back Schottky diode as illustrated in Figure 5a.
One advantage of the back-to-back diode measurement
is that the large resistance contributed from the series
resistance and the large resistance caused by the sub-
strate can be eliminated. Another advantage is that both
Figure 5 Illustration of the back-to-back diode measurement setup an
of the back-to-back diode measurement setup where only the reverse curr
demonstrating the effective modulation of current density by the thickness
in positive and negative biasing, only the reverse current
is measured, and fortunately, the change in reverse sat-
uration current reflects the characteristic of the contact
where maximum reverse saturation current is desired
for ohmic contacts.
Figure 5b shows the I-V characteristics of an Al/

Al2O3/SiC diode with different thicknesses of Al2O3. Re-
verse bias current first decreases due to the increase of
Al2O3 thickness which can block off the current and
then has its minimum at the thickness of 1.98 nm which is
suitable for the Schottky contact. When keeping on in-
creasing the thickness, the reverse current rises since the
formation of positive dipole between Al2O3 and SiO2 pulls
d back-to-back Al/Al2O3/SiC diode measurements. (a) Illustration
ent is measured. (b) Back-to-back Al/Al2O3/SiC diode measurements
of Al2O3.
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down the SBH, and then, the reverse current reaches its
maximum at the thickness of 3.59 nm which is suitable for
ohmic contact. Next, the reverse current decreases as
Al2O3 thickness increases owing to the large tunnel barrier
induced by the thick Al2O3 film. The experimental I-V
characteristics clearly indicate that current density is effect-
ively modulated with the insulator’s thickness.
Contact resistance (RC) of the Al/Al2O3/SiC MIS

structure was further evaluated through contact end re-
sistance method [20]. RC involves two resistances in a
series: a tunneling resistance (RT) due to the insulator
and a resistance (RSB) caused by the Schottky barrier.
When the thickness of Al2O3 is thinner than 1.98 nm,
the dipole was not completely formed, and as a result,
the inserted insulator blocks the current. In this range,
along with the increase of the insulator, the contact re-
sistance increases. According to the XPS result discussed
above, the electronic dielectric dipole begins to create at
the thickness of 1.98 nm. The formation of the dipole at
the interface reduces the tunneling barrier and then
raises the current across the contact in a reasonable re-
gion. Figure 6 shows the RC versus the thickness of
Al2O3, which provided that the contact resistance is
modulated by the thickness of the insulator. It is inter-
esting to find that there exists a trough because of the
trade-off between a reduced barrier by the electronic di-
electric dipole and an increased tunneling resistance by
the accretion of the insulator’s thickness.

Conclusions
In this work, we successfully realize the modulation of
current density at the metal/SiC contact by inserting a
thin Al2O3 layer between the metal and semiconductor.
By varying the thickness of Al2O3, we can acquire the
ideal current density and contact resistance based on
our demands and achieve a transfer between Schottky
contact and ohmic contact. The mechanism appears to
be the coaction of a positive dielectric dipole decreasing
the barrier and the tunneling resistance increasing the
barrier. Consequently, this is a promising method to in-
crease the performance of SiC electronic applications.
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