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Abstract

The differences in energy between electronic bands due to valley splitting are of paramount importance in interpreting
transport spectroscopy experiments on state-of-the-art quantum devices defined by scanning tunnelling microscope
lithography. Using VASP, we develop a plane-wave density functional theory description of systems which is size
limited due to computational tractability. Nonetheless, we provide valuable data for the benchmarking of empirical
modelling techniques more capable of extending this discussion to confined disordered systems or actual devices.
We then develop a less resource-intensive alternative via localised basis functions in SIESTA, retaining the physics of
the plane-wave description, and extend this model beyond the capability of plane-wave methods to determine the
ab initio valley splitting of well-isolated δ-layers. In obtaining an agreement between plane-wave and localised
methods, we show that valley splitting has been overestimated in previous ab initio calculations by more than 50%.
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Background
The study of the quantum properties of low-dimensional
and doped structures is central to many nanotechnology
applications [1-15]. Quantum devices in silicon have been
the subject of concentrated recent interest, both exper-
imental and theoretical, including the recent discussion
of Ohm’s law at the nanoscale [16]. Efforts to make such
devices have led to atomically precise fabrication methods
which incorporate phosphorus atoms in a single mono-
layer of a silicon crystal [17-20]. These dopant atoms can
be arranged into arrays [21] or geometric patterns for
wires [16,22] and associated tunnel junctions [23], gates,
and quantum dots [24,25] - all of which are necessary
components of a functioning device [26]. The patterns
themselves define atomically abrupt regions of doped and
undoped silicon. While silicon, bulk-doped silicon, and
the physics of the phosphorus incorporation [27] are well
understood, models of this quasi-two-dimensional phos-
phorus sheet are still in their initial stages. In particular, it
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is critical in many applications to understand the effect of
this confinement on the conduction band valley degener-
acy, inherent in the band structure of silicon. For example,
the degeneracy of the valleys has the potential to cause
decoherence in a spin-based quantum computer [28,29],
and the degree of valley degeneracy lifting (valley split-
ting) defines the conduction properties of highly confined
planar quantum dots [26].
The importance of understanding valley splitting in

monolayer δ-doped Si:P structures has led to a number of
theoretical works in recent years, spanning several tech-
niques, from pseudo-potential theories via planar Wan-
nier orbital bases [30], density functional theory (DFT)
via linear combination of atomic orbital (LCAO) bases
[31,32], to tight-bindingmodels [33-37] and effective mass
theories (EMT) [38-40]. We note that several of these
papers are based upon the assumption that the effec-
tive masses of δ-doped P in Si remain unchanged from
bulk-doped values [38,39], an assumption which has been
challenged [30,33]. Others assume doping over a multi-
atomic plane band [33,38] which no longer represents
the state of the art in fabrication. There is currently lit-
tle agreement between the valley splitting values obtained
using these methods, with predictions ranging between
5 to 270 meV, depending on the calculational approach
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and the arrangement of dopant atoms within the δ-layer.
Density functional theory has been shown to be a useful
tool in predicting how quantum confinement or dop-
ing perturbs the bulk electronic structure in silicon- and
diamond-like structures [41-45]. The work of Carter et
al. [31] represents the first attempt using DFT to model
these devices by considering explicitly doped δ-layers,
using a localised basis set and the assumption that a basis
set sufficient to describe bulk silicon will also adequately
describe P-doped Si. It might be expected, therefore,
that the removal of the basis set assumption will lead to
the best ab initio estimate of the valley splitting avail-
able, for a given arrangement of atoms. In the context of
describing experimental devices, it is important to sepa-
rate the effects of methodological choices, such as this,
from more complicated effects due to physical realities,
including disorder.
In this paper, we determine a consistent value of the

valley splitting in explicitly δ-doped structures by obtain-
ing convergence between distinct DFT approaches in
terms of basis set and system sizes. We perform a com-
parison of DFT techniques, involving localised numer-
ical atomic orbitals and delocalised plane-wave (PW)
basis sets. Convergence of results with regard to the
amount of Si ‘cladding’ about the δ-doped plane is studied.
This corresponds to the normal criterion of supercell
size, where periodic boundary conditions may intro-
duce artificial interactions between replicated dopants
in neighbouring cells. A benchmark is set via the delo-
calised basis for DFT models of δ-doped Si:P against
which the localised basis techniques are assessed. Impli-
cations for the type of modelling being undertaken
are discussed, and the models extended beyond those
tractable with plane-wave techniques. Using these calcu-
lations, we obtain converged values for properties such
as band structures, energy levels, valley splitting, elec-
tronic densities of state and charge densities near the
δ-doped layer.
The paper is organised as follows: the ‘Methods’ section

outlines the parameters used in our particular calcula-
tions; we present the results of our calculations in the
‘Results and discussion’ section and draw conclusions in
the ‘Conclusions’ section. An elucidation of effects modi-
fying the bulk band structure follows in Appendices 1 and
2 to provide a clear contrast to the properties deriving
from the δ-doping of the silicon discussed in the paper.
The origin of valley splitting is discussed in Appendix 3.

Methods
Density functional theory calculations have been carried
out using both plane-wave and LCAO basis sets. For the
PW basis set, the Vienna ab initio simulation package
(VASP) [46] software was used with projector augmented
wave [46,47] pseudo-potentials for Si and P. Due to the

nature of the PW basis set, there exists a simple rela-
tionship between the cut-off energy and basis set com-
pleteness. For the structures considered in this work, the
calculations were found to be converged for PW cut-offs
of 450 eV.
Localised basis set calculations were performed using

the Spanish Initiative for Electronic Simulations with
Thousands of Atoms (SIESTA) [48] software. In this case,
the P and Si ionic cores were represented by norm-
conserving Troullier-Martins pseudo-potentials [49]. The
Kohn-Sham orbitals were expanded in the default single-
ζ polarized (SZP) or double-ζ polarized (DZP) basis
sets, which consist of 9 and 13 basis functions per
atom, respectively. Both the SZP and DZP sets con-
tain s-, p-, and d-type functions. These calculations
were found to be converged for a mesh grid energy
cut-off of 300 Ry. In all cases, the generalized gradient
approximation PBE [50] exchange-correlation functional
was used.
The lattice parameter for bulk Si was calculated

using an eight-atom cell and found to be converged
for all methods with a 12 × 12 × 12 Monkhorst-Pack
(MP) k-point mesh [51]. The resulting values are pre-
sented in Table 1 and were used in all subsequent
calculations.
In modelling δ-doped Si:P, as used in another work

[26], we adopted a tetragonal supercell description of the
system, akin to those of other works [30,31]. In accor-
dance with the experiment, we inserted the P layer in a
monatomic (001) plane as one atom in four to achieve
25% doping. This will henceforth be referred to as 1/4
monolayer (ML) doping. In this case, the smallest repeat-
ing in-plane unit had 4 atoms/ML (to achieve one in four
dopings) and was a square with the sides parallel to the
[110] and [1̄10] directions. The square had a side length
a
√
2 (see Figure 1), where a is the simple cubic lattice

constant of bulk silicon. The phosphorus layers had to be
separated by a considerable amount of silicon due to the
large Bohr radius of the hydrogen-like orbital introduced
by P in Si (approximately 2.5 nm). Carter et al. [31] showed
that this far exceeded the sub-nanometre cell side length.
If desired, cells with a lower in-plane density of dopants
may be constructed by lengthening the cell in the x and
y directions, such that more Si atoms occupy the doped
monolayer in the cell - though this would significantly
increase the computational cost of such a calculation.

Table 1 Eight-atom cubic unit cell equilibrium lattice
parameters for different methods used in this work

Method a0 (Å)

PW (VASP) 5.469

DZP (SIESTA) 5.495

SZP (SIESTA) 5.580
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Figure 1 (001) Planar slice of the c(2×2) structure at the 1/4 ML
dopedmonolayer. One of the Si sites has been replaced by a P atom
(shown in dark gray). The periodic boundaries are shown in black.

A collection of tetragonal cells comprising 4, 8, 16, 32,
40, 60, 80, 120, 160 and 200 monolayers was constructed,
having four atomic sites per monolayer and oriented
with faces in the [110], [1̄10], and [001] directions (see
Figure 2). Cells used in PW calculations began at 4 layers
and ran to 80 layers; larger cells were not computationally
tractable with this method. SZP and DZP models began
at 40 layers to overlap with PW for the converging region
and were then extended to their tractable limit (200 and
160 layers, respectively) to study convergence past the
capability of PW.
For tetragonal cells, the k-point sampling was set as a

9× 9×N �-centred MP mesh as we have found that fail-
ing to include � in the mesh can lead to the anomalous
placement of the Fermi level on band structure diagrams.
N varied from 12 to 1 as the cells became more elon-
gated (see Appendix 1). We note that, as mentioned in
the work of Carter et al. [32], the large supercells involved
required very gradual (<0.1%) mixing of the new density
matrix with the prior step, leading to many hundreds of
self-consistent cycles before convergence was achieved.
Although it has been previously found that relaxing the

positions of the nuclei gave negligible differences (<0.005
Å) to the geometry [31], this was for a 12-layer cell and
may not have included enough space between periodic
repetitions of the doping plane for the full effect to be
seen. Whilst a 40-layer model was optimised in the work
of Carter et al. [32], this made use of amixed atom pseudo-
potential and is not explicitly comparable to the models
presented here. We have performed a test relaxation on
a 40-layer cell using the PW basis (VASP). The maximum
subsequent ionic displacement was 0.05 Å, with most
being an order of magnitude smaller. The energy gained in
relaxing the cell was less than 37 meV (or 230 μeV/atom).
We therefore regarded any changes to the structure as
negligibly small, confirming the results of Carter et al.
[31,32], and proceeded without ionic relaxation.

Figure 2 Ball and stick model of a δ-doped Si:P layer viewed
along the [110] direction. Thirty-two layers in the [001] direction are
shown. Si atoms (small gray spheres), P atoms (large dark gray
spheres), covalent bonds (gray sticks), repeating cell boundary (solid
line).

Single-point energy calculations were carried out with
both software programs; for VASP, the electronic energy
convergence criterion was set to 10−6 eV, and the tetra-
hedron method with Blöchl correction [52] was used. For
SIESTA, a two-stage process was carried out: Fermi-Dirac
electronic smearing of 300 K was applied in order to con-
verge the density matrix within a tolerance of one part in
10−4; the calculation was then restarted with the smear-
ing of 0 K, and a new electronic energy tolerance criterion
of 10−6 eV was applied (except for the 120- and 160-layer
DZP models for which this was intractable; a tolerance of
10−4 eV was used in these cases). This two-stage process
aided convergence as well as ensuring that the energy lev-
els obtained were comparably accurate across methods.
In addition, for each doped cell thus developed and stud-
ied, an undoped bulk Si cell of the same dimensions was
constructed to aid in isolating those features primarily
due to the doping.

Results and discussion
Analysis of band structure
Once converged charge densities were obtained, band
structures were calculated along the M–�–X high-
symmetry pathway (as shown in Appendix 1), using at
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least 20 k-points between high-symmetry points. For
comparative purposes, the band structures have all been
aligned at the valence band maximum (VBM).
Figure 3 contrasts the bulk and doped band structures

for the 40-layer PW calculation. DZP and SZP results
are qualitatively similar on this scale, albeit with differ-
ent band energies in the SZP model, and are omitted
in the interest of clarity in the diagram. As discussed in
Appendix 2, it is evident from the bulk values that the
elongated cells have led to the folding of two conduction
band minimum valleys towards the � point. Also visi-
ble is the difference that the doping potential makes to
the system; what was the lowest unoccupied orbital (�1
band) in the bulk is now dragged down in energy by the
extra ionic potential. It is of note that the region near
�, corresponding to the kz valleys which can be mod-
elled as having different effective masses to the kx,y valleys,
[30] is brought lower than the region corresponding to
the kx,y valleys and is non-degenerate. The second (�2)
band behaves in a similar fashion. The third (�) band
appears to maintain a minimum away from the � point
in the �TET direction (which is equivalent to the �FCC
direction; see Appendix 1) but in a less parabolic fashion
than the lower two; its minimum is similar to the value
at �. This band is non-degenerate along this particular
direction in k-space, but due to the supercell symmetry,
it is actually fourfold degenerate, in contrast to the other
bands.
The Fermi level for the doped system is also shown,

clearly being crossed by all three of these bands which are
therefore able to act as open channels for conduction.
As mentioned above, the band structures are sim-

ilar across all methods, but upon detailed inspec-
tion, important differences come to light. A closer
look at the � band shows a qualitative difference
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Figure 3 Full band structure (colour online) of the 40-layer
tetragonal system calculated using PW (VASP). Bulk band structure
(shaded gray background), doped band structure (solid black) and
Fermi level (labelled solid red).

between the predictions using SZP (Figure 4c) and
the PW and DZP results (Figure 4a,b): the models
with a more complete basis predict the band mini-
mum to occur in the �TET (�FCC) direction, below
the value at �, while the SZP band structure shows
the reverse - the minimum at �, a similar amount
below a secondary minimum in the �TET direction, a
qualitative difference.
The difference between the energies of the first two

band minima (�1–�2, illustrated in Figure 5), or the val-
ley splitting, from the PW and DZP calculations, agrees
with each other to within ∼6 meV. Significantly, the
value obtained using our SZP basis set differs by 52
meV, some 55% larger than the value obtained using
the PW basis set. The importance of this discrepancy
cannot be overstated; valley splitting is directly relat-
able to experimentally observable resonances in trans-
port spectroscopy of devices made with this δ-doping
technology (see [26]).
In the smallest cells (<16 layers), less than three bands

are observed. This is likely due to the lack of cladding
in the z direction, leading to a significant interaction
between the dopant layers, raising the energy of each
band. Whilst the absolute energy of each level still varies
somewhat, evenwith over 100 layers incorporated, we find
that the �1–�2 values are well converged with 80 layers
of cladding for all methods (see Figure 5). Indeed, they
may be considered reasonably converged even at the 40-
layer level (0.5 meV or less difference to the largest models
considered). The differences between the energies of the
second and third band minima (�2–� splittings) are also
shown in Figure 5 and show good convergence (within 1
meV) for cells of 80 layers or larger.
The Fermi level follows a similar pattern to the �- and

�-levels. In particular, the gap between the Fermi level

0.56

0.60

0.64 (a)

0.56

0.60

0.64

E
ne

rg
y 

[e
V

] (b)

0.77

0.81

0.85

0.25 M Γ 0.25 X

(c)

ΔΣ

Figure 4 Band structure (colour online) of the 40-layer
tetragonal system zoomed in on the� band. (a) PW (VASP),
(b) DZP (SIESTA) and (c) SZP basis sets were used. Fermi level is shown
by a solid horizontal red line.
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a)

b)
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Figure 5Minimum band energies for tetragonal systems with
1/4 ML doping. (a) PW (VASP), (b) DZP (SIESTA) and (c) SZP (SIESTA)
basis sets were used. Fermi level also shown where appropriate. Bold
numbers indicate energy differences between band minima.

and �1 level does not change by more than 1 meV from 60
to 160 layers.
Given that the properties of interest are the differences

between the energy levels, rather than their absolute val-
ues (or position relative to the valence band), in the inter-
est of computational efficiency, we observe that using the
DZP basis with 80 layers of cladding is sufficient to achieve
consistent, converged results.

Valley splitting
Table 2 summarises the valley splitting values of 1/4
ML P-doped silicon obtained using different techniques,
showing a large variation in the actual values. In order
to make sense of these results, it is important to note
two major factors that affect valley splitting: the doping
method and the arrangement of phosphorus atoms in the
δ-layer. As the results from the work of Carter et al. [32]
show, the use of implicit doping causes the valley splitting
value to be much smaller than in an explicit case (∼7 meV
vs. 120 meV). It is also shown that the use of random P
coverage on the δ-layer reduces the valley splitting value
by only 40 to 50 meV compared with the fully ordered
placement, leaving a large discrepancy between the val-
ley splitting results from implicit and explicit doping. This
large decrease in valley splitting due to implicit doping
can be explained by the smearing of the doping layer in
the direction normal to the δ-layer, thereby decreasing the
quantum confinement effect responsible for breaking the
degeneracy in the system. Carter et al. [32] also shows that
the arrangement of the phosphorus atoms in the δ-layer
strongly influences the valley splitting value. In particular,
they showed that there is a difference of up to 220 meV
between P doping along the [110] direction and along the
[100] direction. It should be noted, however, that deter-
ministic nearest-neighbour donor placements are not yet
physically realisable due to the P incorporation mecha-
nism currently employed [27,53]. Similarly, the perfectly
ordered arrangement discussed here is highly improba-
ble, given the experimental limitations, but represents the
ideal case from which effects such as disorder can be
studied.
Our results show that valley splitting is highly sensi-

tive to the choice of basis set. Due to the nature of PW
basis set, it is straightforward to improve its complete-
ness by increasing the plane-wave cut-off energy. In this
way, we establish the most accurate valley splitting value
within the context of density functional theory. Using
this benchmark value, we can then establish the validity
and accuracy of other basis sets, which can be used to
extend the system sizes to that beyond what is practical
using a PW basis set. As seen in Table 2, the valley split-
ting value converges to 93 meV using 80-layer cladding.
The DZP localised basis set gives an excellent agreement
at 99.5 meV using 80-layer cladding (representing a 7%
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Table 2 Valley splitting values of 1/4 ML P-doped silicon
obtained using different techniques

Technique Number of Valley

layers splitting

(meV)

Planar Wannier orbitala [30] 1,000 20

Tight binding (4 K)b [34] ∼150 ∼17

Tight binding (4 K)b [37] 120 25

Tight binding (300 K)b [36] ∼150 ∼17

40 7

80 6

DFT, SZP basis set a [32] 120 6

160 6

200 6

DFT, SZP: ordered b [31] 40 120

DFT, SZP: random disorder b [31] 40 ∼70

DFT, SZP: [110] direction alignment b [32] 40 ∼270

DFT, SZP: dimers b [32] 40 ∼85

DFT, SZP: random disorder b [32] 40 ∼80

DFT, SZP: clusters b [32] 40 ∼65

DFT, SZP: [100] direction alignment b [32] 40 ∼50

DFT, SZP: ordered,M=4b,c [32] 80 153

DFT, SZP: ordered,M=6b,c [32] 80 147

DFT, SZP: ordered,M=10b,c [32] 80 147

40 145.1

60 144.7

SZP,M = 9 (this work)b,c 80 144.8

120 144.7

160 144.7

200 144.7

16 118.6

32 94.1

PW,M = 9 (this work)b,d 40 93.5

60 93.3

80 93.2

40 100

60 99.5

DZP,M = 9 (this work)b,c 80 99.5

120 99.3

160 99.6

Techniques are grouped by similarity. aImplicit doping; bExplicit doping;
cM × M × 1 k-points; dM × M × N k-points; N as in Appendix 1.

difference). On the other hand, our SZP localised basis
set gave a value of 145 meV using the same amount of
cladding. This represents a significant difference of 55%
over the value obtained using PW basis set and demon-
strates that SZP basis sets are unsuitable for accurate
determination of valley splitting in these systems.

Density of states
The electronic density of states (eDOS) was calculated for
each cell. Figure 6 compares the unscaled eDOS for bulk
80-layer cells to that of doped cells varying from 40 to 80
layers. The bulk bandgap is visible, with the conduction
band rising sharply to the right of the figure. The doped
eDOS exhibits density in the bulk bandgap, although the
features of the spectra differ slightly according to the basis
set used.
The Fermi energy exhibits convergence with respect

to the amount of cladding, as reported above. It is also
notable that the eDOSwithin the bandgap are nearly iden-
tical regardless of the cell length (in z). This indicates that
layer-layer interactions are negligibly affecting the occu-
pied states and, therefore, that the applied ‘cladding’ is
sufficient to insulate against these effects.

Electronic width of the plane
In order to quantify the extent of the donor-electron
distribution, we have integrated the local density of states
between the VBM and Fermi level and have taken the
planar average with respect to the z-position. Figure 7
shows the planar average of the donor electrons (a sum
of both spin-up and spin-down channels) for the 80-layer
cell calculated using the DZP basis set. After removing
the small oscillations related to the crystal lattice to focus
on the physics of the δ-layer, by Fourier transforming, a
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Figure 7 Planar average of donor-electron density as a function
of z-position for 1/4 ML-doped 80-layer cell. The DZP basis set was
used. The fitted Lorentzian function is also shown.

Lorentzian function was fitted to the distribution profile.
(Initially, a three-parameter Gaussian fit similar to that
used in [40] was tested, but the Lorentzian gave a better
fit to the curve.)
Table 3 summarises the maximum donor-electron den-

sity and the full width at half maximum (FWHM) for the
1/4 ML-doped cells, each calculated from the Lorentzian
fit. Both of these properties are remarkably consistent
with respect to the number of layers, indicating that they
have converged sufficiently even at 40 layers.
Our results differ from a previous DFT calculation [32]

which cited an FWHM of 5.62 Å for a 1/4 ML-doped, 80-
layer cell calculated using the SZP basis set (and 10×10×1
k-points). We note that those values were taken from the
unfitted, untransformed donor-electron distribution and
represent an approximately 15% underestimation in com-
parison with the DZP result. The peak height is not shown
in the work of Carter et al. [32], but the value from another
work [31] (1.7 × 1021 e/cm3) is a factor of 0.44 smaller
than the peak we observe here. This may be due, to some
extent, to the larger width of the SZP model leading to an
associated lowering of the peak density.

Conclusions
In this article, we have studied the valley splitting of
the monolayer δ-doped Si:P, using a density functional

Table 3 Calculatedmaximum donor-electron density,
ρmax, and FWHM

Number of ρmax FWHM

layers (×10−3 e/Å) (Å)

40 3.8 6.2

60 3.9 6.2

80 3.9 6.5

Values are presented as a function of the number of layers in 1/4 ML-doped cells.
The DZP basis set was used.

theory model with a plane-wave basis to establish firm
grounds for comparison with less computationally inten-
sive localised-basis ab initio methods. We found that the
description of these systems (by density functional the-
ory, using SZP basis functions) overestimates the valley
splitting by over 50%. We show that DZP basis sets are
complete enough to deliver values within 10% of the
plane-wave values and, due to their localised nature, are
capable of calculating the properties of models twice as
large as is tractable with plane-wave methods. These DZP
models are converged with respect to size well before their
tractable limit, which approaches that of SZP models.
Valley splittings are important in interpreting transport

spectroscopy experiment data, where they relate to fami-
lies of resonances, and in benchmarking other theoretical
techniques more capable of actual device modelling. It is
therefore pleasing to have an ab initio description of this
effect which is fully converged with respect to basis com-
pleteness as well as the usual size effects and k-point mesh
density.
We have also studied the band structures with all three

methods, finding that the DZP correctly determines the
�-band minima away from the � point, where the SZP
method does not. We show that these minima occur in
the � direction for the type of cell considered, not the �

direction as has been previously reported. Having estab-
lished the DZP methodology as sufficient to describe the
physics of these systems, we then calculated the elec-
tronic density of states and the electronic width of the
δ-layer. We found that previous SZP descriptions of these
layers underestimate the width of the layers by almost
15%.
We have shown that the properties of interest of δ-

doped Si:P are well converged for 40-layer supercells using
a DZP description of the electronic density. We recom-
mend the use of this amount of surrounding silicon, and
technique, in any future DFT studies of these and simi-
lar systems - especially if inter-layer interactions are to be
minimised.

Appendix 1
Subtleties of bandstructure
Regardless of the type of calculation being undertaken, a
band structure diagram is inherently linked to the type
(shape and size) of cell being used to represent the system
under consideration. For each of the 14 Bravais lattices
available for three-dimensional supercells, a particular
Brillouin zone (BZ) with its own set of high-symmetry
points exists in reciprocal space [54]. Similarly, each BZ
has its own set of high-symmetry directions. Some of
these BZs share a few high-symmetry point labels (or
directions), such asX or L (� or�), and they all contain�,
but these points are not always located in the same place
in reciprocal space.
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A simple effect of this can be seen by increasing the size
of a supercell. This has the result of shrinking the BZ and
the coordinates of high-symmetry points on its boundary
by a corresponding factor. Consider the conduction band
minimum (CBM) found at the � valley in the Si conduc-
tion band. This is commonly located at k0 ∼ 0.852π

a in the
� direction towards X (also Y, Z and their opposite direc-
tions). Should we increase the cell by a factor of 2, the BZ
will shrink (BZ→BZ’), placing the valley outside the new
BZ boundary (past X’); however, a valid solution in any
BZ must be a solution in all BZs. This results in the phe-
nomenon of band folding, whereby a band continuing past
a BZ boundary reenters the BZ on the opposite side. Since
the X direction in a face-centred cubic (FCC) BZ is six-
fold symmetric, a solution near the opposite BZ boundary
is also a solution near the one we are focussing on. This
results in the appearance that the band continuing past
the BZ boundary is ‘reflected’, or folded, back on itself into
the first BZ. Since the new BZ boundary in this direction
is now at k′

BZ = X ′ = 0.5 2π
a , the location of the valley will

be at k′
0 = X ′ −

(
k0 − X ′) ∼ 0.152π

a , as mentioned in the
work of Carter et al. [31]. Each further increase in the size
of the supercell will result in more folding (and a denser
band structure). Care is therefore required to distinguish
between a new band and one which has been folded due
to this effect when interpreting band structure.
Continuing with our example of silicon, whilst the clas-

sic band structure [55] is derived from the bulk Si prim-
itive FCC cell (containing two atoms), it is often more
convenient to use a simple cubic (SC) supercell (eight
atoms) aligned with the 〈100〉 crystallographic directions.
In this case, we experience some of the common labelling;
the � direction is defined in the same manner for both
BZs, although we see band folding (in a similar manner to
that discussed previously) due to the size difference of the
reciprocal cells (see Figure 8). We also see a difference in
that, although the � direction is consistent, the points at
the BZ boundaries have different symmetries and, there-
fore, label (KFCC, MSC). (The LFCC point and �FCC direc-
tion have no equivalent for tetragonal cells, and hence, we
do not consider band structure in that direction here).
Consider now the δ-doping case discussed in the

‘Methods’ section, where we wish to align our cell with the
[110] and [1̄10] directions (by rotating the cell 45° anti-
clockwise about z; this will also require a resizing of the
cell in the plane to maintain periodicity - see Figure 9), to
allow us to include precisely four atoms per monolayer (as
required for the minimal representation of 1/4 ML dop-
ing). We now have a situation where the XTET point in
the new tetragonal BZ (see Figure 10) is no longer in the
direction of the XSC point in the simple cubic BZ, despite
both X points being in the centre of a face of their BZ.
Due to the rotation, what used to be the �SC direction

a)

b) c)

Figure 8 Band structure and physical structure of FCC and SC
cells. (a) Typical band structure of bulk Si for two-atom FCC (solid
lines) and eight-atom SC cells (dotted lines with squares), calculated
using the VASP plane-wave method (see ‘Methods’ section).
(b) Two-atom FCC cell. (c) Eight-atom SC cell.

in the simple cubic BZ is now the �TET direction (point-
ing towards M at the corner of the BZ in the kz = 0
plane) in the tetragonal BZ. The tetragonal CBM, while
physically still the same as the CBM in the FCC or sim-
ple cubic BZ, is not represented in the same fashion (see
Figure 11).

Figure 9 Geometrical difference between the simple cubic and
tetragonal cells. A (001) planar cut through an atomic monolayer is
shown.
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Figure 10 The Brillouin zone for a tetragonal cell. TheM–�–X
path used in this work is shown.

Appendix 2
Band folding in the z direction
Increasing the z dimension of the cell leads to successive
folding points being introduced as the BZ shrinks along
kz (see Appendix 1). This has the effect of shifting the
conduction band minima in the ±kz directions closer and
closer to the � point (see Figure 8a) and making the band
structure extremely dense when plotting along kz. This
results in the value of the lowest unoccupied eigenstate at
� being lowered as what were originally other sections of
the band are successively mapped onto �, and after a suf-
ficient number of folds, the value at � is indistinct from
the original CBM value. The effects of this can be seen in
Table 4, which describes increasingly elongated tetrago-
nal cells of bulk Si. When we then plot the band structure
in a different direction, e.g. along kx, the translation of the
minima from ±kz onto the � point appear as a new band

 0

 1

M Γ X

E
ne

rg
y 

[e
V

]

64 layers
16 layers
4 layers

Figure 11 Band structure (colour online) diagram for tetragonal
bulk Si structures with increasing number of layers. The VASP

plane wave method was used (see ‘Methods’ section).

Table 4 Energy levels of tetragonal bulk Si structures

Basis Number of Number of LUMO CBM

type layers k-pts at � (at�FCC)

in kz (eV) (eV)

PW 4 12 0.7517

(VASP) 8 6 0.7517

16 3 0.6506

32 2 0.6170

40 1 0.6179

64 1 0.6137

80 1 0.6107 0.6102

DZP 40 1 0.6218

(SIESTA) 60 1 0.6194

80 1 0.6154

120 1 0.6145

160 1 0.6151 0.6145

SZP 40 1 0.8392

(SIESTA) 60 1 0.8349

80 1 0.8315

120 1 0.8311

160 1 0.8315

200 1 0.8310 0.8309

For details of the calculation parameters, see the ‘Methods’ section.

with twofold degeneracy. The degeneracy of the original
band seems to drop from six- to fourfold, in line with the
reduced symmetry (we only explicitly calculate one, and
the other three occur due to symmetry considerations).
This is half of the origin of the ‘� bands’ (more details are
presented in Appendix 3). Once the kz valleys are sited at
�, parabolic dispersion corresponding to the transverse
kinetic energy terms is observed along kx and ky, at least
close to the band minimum (see Figure 11) - in contrast
to the four ‘� bands’ whose dispersion (again parabolic)
is governed by the longitudinal kinetic energy terms. The
different curvatures are related to the different effective
masses (transverse, longitudinal) of the silicon CBM. It
should be noted that the bands are still degenerate in
energy at this stage - their minima (and range) occur
at (over) the same energy (energies) even though their
projections onto the kx axis are different.
All methods considered in Table 4 show the LUMO at

� (folded in along ±kz) approaching the CBM value as
the amount of cladding increases; at 80 layers, the LUMO
at � is within 1 meV of the CBM value. It is also of note
that the PW indirect bandgap agrees well with the DZP
value and less so with the SZPmodel. This is an indication
that, although the behaviour of the LUMO with respect
to the cell shape is well replicated, the SZP basis set is
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demonstrably incomplete. Conversely, pairwise compar-
isons between the PW and DZP results show agreement
to within 5 meV.
It is important to distinguish effects indicating conver-

gence with respect to cladding for doped cells (i.e. elim-
ination of layer-layer interactions) from those mentioned
previously derived from the shape and size of the super-
cell. Strictly, the convergence (with respect to the amount
of encapsulating Si) of those results we wish to study in
detail, such as the differences in energy between occupied
levels in what was the bulk bandgap, provides the most
appropriate measure of whether sufficient cladding has
been applied.

Appendix 3
Valley splitting
Here, we discuss the origins of valley splitting, in the con-
text of phosphorus donors in silicon. Following on from
the discussion of Si band minima in Appendices 1 and 2,
we have, via elongation of the supercell and consequent
band folding, a situation where, instead of the sixfold
degeneracy (due to the underlying symmetries of the Si
crystal lattice), we see an apparent splitting of these states
into two groups (6→2+4, or 2 � + 4 � minima).
We now consider what happens in perfectly ordered δ-

doped monolayers, as per the main text. Here, we break
the underlying Si crystal lattice symmetries by including
foreign elements in the lattice. By placing the donors reg-
ularly (according to the original Si lattice pattern) in one
[001] monolayer, we reduce the symmetry of the system
to tetragonal, with the odd dimension being transverse to
the plane of donors. This dimension can be periodic (as
in the supercells described earlier), infinite (as in the EMT
model of Drumm et al. [40]) or extremely long on the
atomic scale (as the experiments are).
Immediately, therefore, we expect the same apparent

2 + 4 breaking of the original sixfold degenerate con-
duction band minima. Of course, as we have introduced
phosphorus (which has one more electron and one more
proton than silicon), this next band (still actually sixfold
degenerate in bulk silicon) will be occupied and will now
be influenced by the new potential. The sub-bands inter-
act differently with the potential, thanks to the different
curvatures in their dispersion relations and drop by dif-
ferent amounts into the bandgap. As discussed in detail
in Drumm et al. [40], the filling of these sub-bands is par-
tial rather than complete (or absent) and is governed by
both the energy of their minima and their respective effec-
tive masses. We now have an actual breaking of the sixfold
degeneracy into a true 2 + 4 system.
If we still look closer, we might expect these lower

degeneracies to spontaneously break - nature, after all, is
said to abhor degeneracy. Indeed, this does occur, but for
this special case of δ-doped Si:P, the effect is enhanced

by the strong V-shaped potential about the monolayer
due to the extra charge in the donor nuclei [40]. Consid-
eration of odd and even solutions to the effective mass
Schrödinger equation for this sub-band leads to their
superposition(s) and subsequent energy difference. This
is enhanced further in the Kohn-Sham formalism, as evi-
denced in previous sections. (The four � minima also
split but on a far-reduced scale not visible using current
DFT techniques.) We thus expect, in the DFT picture, to
see 6 → 2 + 4 → 1 + 1 + 4 sub-band structure, namely
the �1, �2 and � bands. The valley splitting which is the
main focus of this paper is the energy difference between
the �1 and �2 band minima due to the superposition of
solutions.
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