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Hafnium metallocene compounds used as
cathode interfacial layers for enhanced electron
transfer in organic solar cells
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Abstract

We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A
metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich
structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-
hexylthiophene-2,5-diyl) + [6,6]-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV)
dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and
a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance
of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs
with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion
efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5).
It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between
the active layer and the cathode, and thus increases the PCE of the OSCs.
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Introduction
Organic solar cells [OSCs] have attracted attention due
to their unique advantages, such as easy processing, low
cost of fabrication of large-area cells, and mechanical
flexibility [1]. However, the efficiency of organic solar
cells is not sufficient for them to be used commercially.
Therefore, many methods, such as treatment and anneal-
ing, have been proposed to improve the device perfor-
mance [2]. Recently, the most efficient OSCs have been
fabricated based on the bulk-heterojunction concept, in
which conjugated polymers (electron donors) and fuller-
enes (electron acceptors) form a three-dimensional net-
work with a large area of phase-separation interface.
When photons are absorbed by the organic materials,
electron-hole pairs with strong binding energy are gener-
ated. The excitons subsequently dissociate, forming free
carriers, while they diffuse to the interface between the

electron donor and the acceptor. Then, these photogen-
erated holes and electrons transport through the donor
and acceptor materials, respectively, toward the electro-
des, eventually resulting in a photocurrent [1-3].
One of the key issues in the development of high effi-

ciency OSCs is the need to increase the charge carrier
transport between the active layer and the electrode.
Metal electrodes have also received attention in this con-
text. This is not surprising considering the experience
with organic light emitting diodes, into which LiF was
introduced to enhance the solar cell performance [4].
Recently, several approaches involving the insertion of var-
ious thin layers, such as Cs2CO3, have been reported
which aim to improve the electron injection properties
between the active layer and the electrode in light-emitting
devices [5].
In this work, we investigate the photovoltaic properties

of OSCs with hafnium metallocene compounds as the
cathode interfacial layer. A metallocene compound con-
sists of a transition metal and two cyclopentadienyl
ligands coordinated in a sandwich structure. We used
poly(3-hexylthiophene) [P3HT] as the electron donor
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material and [6,6]-phenyl C61 butyric acid methyl ester
[PCBM] as the electron acceptor to fabricate OSCs. A
thin layer of bis-(ethylcyclopentadienyl) hafnium(IV)
dichloride [ECHD] was inserted between the active layer
and the cathode. The use of a hafnium metallocene com-
pound cathode interfacial layer improved the perfor-
mance of OSCs compared to that of OSCs without the
interfacial layer.

Experiments
The structure of the solar cell and the chemical structure
of the ECHD are presented schematically in Figure 1. To
fabricate the OSCs, poly (styrene sulfonate)-doped poly
(3,4-ethylene dioxythiophene) [PEDOT:PSS] (26 nm), a
mixture of P3HT and PCBM (80 nm), ECHD (various
thickness), and aluminum [Al] (80 nm) were deposited on
the indium-tin-oxide[ITO] anode as a hole transport layer,
a photo active layer, and a cathode, respectively. The sub-
strates used in this study were commercially available
ITO-coated glass (Samsung Corning, Corning Inc., Corn-
ing, NY, USA) with an ITO film thickness of 1,425 Å and
a sheet resistance of 11.1 Ω/sq. First, the ITO glass was
cleaned successively in ultrasonic baths of trichloroethy-
lene, acetone, methanol, and deionized water for 10 min
each. A mixture of PEDOT:PSS and isopropyl alcohol
with a weight ratio of 1:2 was used for spin-coating. A
mixture of P3HT and PCBM (P3HT + PCBM) with the
optimized weight ratio of 1:1 was prepared with chloro-
benzene (4 wt.%). Thin films of PEDOT:PSS and P3HT +

PCBM were formed on the ITO-coated glass by spin-coat-
ing. The spin speed of the polymer film was 4,000 rpm for
PEDOT:PSS and 1,000 rpm for P3HT + PCBM. Then,
ECHD and Al were deposited on the P3HT + PCBM film
by thermal evaporation. The current density-voltage char-
acteristics were determined by using a solar simulator
(Luzchem, LZC-SSR, Keithley 2400 SourceMeter, Kiethley
Instruments Inc., Cleveland, OH, USA) under standard
conditions of air mass and 100 mW/cm2 (AM 1.5) at
room temperature. The absorbance spectra for the films
were measured using a UV-Visible [Vis] spectrophot-
ometer (Optizen 2120uvpuls, Mecasys Co., Ltd., Yuseong-
gu, Daejeon, South Korea) to determine the influence of
the ECHD layer on the absorption of the solar spectrum.
The surface roughness was determined by atomic force
microscopy [AFM] (ThermoMicroscopes Corporation,
Sunnyvale, CA, USA). Spectra were recorded on AXIS
NOVA (Kratos Inc., Chestnut Ridge, NY, USA) using a
He I (21.22 eV) source for ultraviolet photoelectron spec-
troscopy [UPS] analysis to investigate the electronic prop-
erties of the ECHD/Al structure. UPS spectra were
measured with the sample biased at -15 V to clear the
detector work function.

Result and discussion
The absorption spectra of ITO/PEDOT:PSS/(P3HT +
PCBM) structures with and without a cathode interfacial
layer are shown in Figure 2. Both samples showed good
absorption in the visible range. The absorption spectrum
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Figure 1 The structure of the solar cell and the chemical structure of the ECHD. (a) A schematic drawing of an organic solar cell structure
with a bis-(ethylcyclopentadienyl) hafnium(IV) dichloride cathode interfacial layer. (b) The chemical structure of the bis-(ethylcyclopentadienyl)
hafnium(IV) dichloride.
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of the sample with the ECHD cathode interfacial layer was
similar to that without the ECHD layer.
The current density versus applied voltage [J-V] charac-

teristics of the organic solar cells with various thicknesses
of ECHD are shown in Figure 3 under illumination with
100 mW/cm2 (AM 1.5). The device without the interfacial
layer was used as the control, and the devices are desig-
nated according to the thickness of the ECHD cathode
interfacial layer. The thickness of the ECHD cathode inter-
facial layer was varied between 0.5 nm and 2.0 nm. The
values characterizing the photovoltaic performances of the
OSCs, such as the short circuit current density [Jsc], open
circuit voltage [Voc], fill factor [FF], and power conversion
efficiency [PCE], are given in Table 1. We see that the
interfacial ECHD layer at the cathode leads to an increase
of Jsc from 8.38 to 10.5 mA/cm2. The highest PCE in this
set of experiments was 2.96% for the device with an
ECHD thickness of 0.7 nm.
Figure 4 shows the AFM images of the ITO/PEDOT:

PSS/(P3HT + PCBM) and ITO/PEDOT:PSS/(P3HT +
PCBM)/ECHD structures. The size of the scanned area
was 2 μm × 2 μm. For the sample without the ECHD
layer, the root mean square [RMS] roughness of the sur-
face was 1.3 nm. However, the sample with the ECHD

layer had an RMS roughness of 0.8 nm. The film spikes,
which are thought to be caused during the heat treatment
after spin-casting, can exist in the P3HT + PCBM active
layer. If the metal cathode is directly deposited on to the
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Figure 2 UV-Vis absorption spectra of the ITO/PEDOT:PSS/(P3HT + PCBM)/ECHD and ITO/PEDOT:PSS/(P3HT + PCBM) structures.
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Figure 3 J-V characteristics of organic solar cells with various
thicknesses of the ECHD cathode interfacial layer. These are
taken under an AM 1.5 illumination of 100 mW/cm2.
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active layer with the film spikes, an inhomogeneous distri-
bution of the electric field may occur at the P3HT:PCBM/
cathode interface. We guess, therefore, that the deposition
of an ultrathin cathode interfacial layer prior to the metal
cathode deposition may smoothen the interface and leads
to a more homogeneous distribution of electric field at the
P3HT:PCBM/cathode interface. As a result, when the
device is properly biased, a more even electron current
will flow between the active layer and the cathode, and
higher efficiency can thus be expected as reported by
Shrotriya et al. [6].
Figure 5a shows the UPS spectra at the secondary elec-

tron cutoff. The cutoff energies, Ecutoff, of Al and ECHD/
Al structures with ECHD thicknesses of 0.5, 0.7, 1.0, and
2.0 nm were found to be 4.12, 3.50, 3.12, 3.07, and 3.07
eV, respectively. It should be noted that the difference
between the Ecutoff values of the ECHD/Al structures and
that of the Al layer was increased by the insertion of
ECHD. Figure 5b shows the UPS spectra of Al and

ECHD/Al structures with different ECHD thicknesses.
The UPS spectrum of the Al layer around the Fermi edge
was shifted to a higher binding energy by the presence of
the ECHD layer. All spectra shown in Figure 5b are verti-
cally shifted and plotted using a low scale to clearly display
the Fermi edge [7].
The spectra shown in Figure 5a, b illustrate the relation-

ships between the width of the spectrum, the sample work
function F, and the photon energy hν. By subtracting the
binding energy of the low energy cutoff from the high
binding energy edge of the UPS spectra, the work function
of the sample is obtained [8]. The change in the work
function of ECHD/Al for various ECHD thicknesses is
shown in Figure 6. As the ECHD thickness increased from
0 to 0.7 nm, F decreased by as much as 0.50 eV. However,
further increasing the ECHD thickness above 0.7 nm
increased the F values of ECHD/Al structures. In this
experiment, therefore, the minimum F value was found
for the ECHD (0.7 nm)/Al structure. In this structure, the
F value was decreased to 3.62 eV from the F of Al, which
is 4.12 eV.
A possible reason for this decrease of the work function

could be due to the hafnium [Hf] element contained in
the ECHD layer. The work function of Hf is reported to
be 3.9 eV, while Al is reported to have a F value in the
range of 4.06 to 4.26 eV [9]. Such a small F value of the
Hf element compared to that of Al may have contributed
to a reduction of the work function of ECHD/Al structure
when the thickness of ECHD was increased up to 0.7 nm.
It seems that for ECHD layers with thicknesses over
0.7 nm, the F value of ECHD/Al system has less influence
from the Hf element. This finding suggests that an ECHD

Table 1 Characteristics of organic solar cells with
different thicknesses of the ECHD cathode interfacial
layer

OSCs Jsc (mA/cm2) Voc (V) FF (%) PCE (%)

Control 8.38 0.62 45 2.34

ECHD 0.5 nm 9.43 0.59 45 2.46

ECHD 0.7 nm 10.5 0.61 46 2.96

ECHD 1.0 nm 9.7 0.60 43 2.52

ECHD 2.0 nm 7 0.59 51 1.77

OSCs, organic solar cells; ECHD, bis-(ethylcyclopentadienyl) hafnium(IV)
dichloride; Jsc, short circuit current density; Voc, open circuit voltage; FF, fill
factor; PCE, power conversion efficiency.

(a) (b)
Figure 4 The AFM images of (a) ITO/PEDOT:PSS/(P3HT + PCBM)/ECHD and (b) ITO/PEDOT:PSS/(P3HT + PCBM).
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layer of proper thickness at the Al interface improves elec-
tron transport, possibly by lowering the work function of
the ECHD/Al structure compared to that of Al, resulting
in an enhanced performance of OSCs.

Conclusion
A metallocene compound (ECHD) that has one hafnium
and two cyclopentadienyl ligands coordinated in a sand-
wich structure was used as a cathode interfacial layer in
OSCs. In this study, we demonstrated that ECHD can be
utilized as an efficient cathode interfacial layer in OSCs
based on P3HT + PCBM. Introduction of the ECHD
layer increased the OSC efficiency from 2.34% to 2.96%,
possibly resulting from a reduction of the work function,
leading to better electron transport at the active layer/Al
interface. In our UPS experiment, the minimum work
function value of 3.62 eV was found for an ECHD/Al
structure with an ECHD thickness of 0.7 nm. It is
thought that the smoother surface of P3HT + PCBM
with ECHD compared to that of P3HT + PCBM without
an ECHD layer also helped to enhance the efficiency.
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Figure 5 UPS spectra in the low kinetic and low binding energy regions. (a) UPS spectra in the low kinetic energy region from ECHD/Al
structures. The onset of secondary electrons for Al is shown by vertical bars. (b) UPS spectra in the low binding energy region from ECHD/Al
structures.
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Figure 6 Changes of work functions in the ECHD/Al structures.
These are measured from UPS measurements as a function of ECHD
thickness.
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