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CuIn(1−x)GaxSe2 nanopore films via
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Abstract

Ordered CuIn(1−x)GaxSe2 (CIGS) nanopore films were prepared by one-step electrodeposition based on porous
anodized aluminum oxide templates. The as-grown film shows a highly ordered morphology that reproduces the
surface pattern of the substrate. Raman spectroscopy and X-ray diffraction pattern show that CIGS nanopore films
had ideal chalcopyrite crystallization. Energy dispersive spectroscopy reveals the Cu-Se phases firstly formed in initial
stage of growth. Then, indium and gallium were incorporated in the nanopore films in succession. Cu-Se phase is
most likely to act as a growth promoter in the growth progress of CIGS nanopore films. Due to the high surface
area and porous structure, this kind of CIGS films could have potential application in light-trapping CIGS solar cells
and photoelectrochemical water splitting.
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Background
In recent years, solar cells attract people’s attention for
its clean and renewable properties [1]. Chalcopyrite
CuInSe2/CuIn(1−x)GaxSe2 (CIS/CIGS) thin films are con-
sidered as a promising candidate for solar cells since they
have a high light absorption coefficient (about 105 cm−1),
good radiation, and thermal stability [2-7]. Also, CIGS
has a direct and tunable bandgap range from 1.04 to 1.72
eV owing to the components of indium and gallium.
Moreover, photoelectrochemical water splitting property
of CIGS has been discussed in works in recent years
[8,9]. Several methods have been reported to fabricate
CIGS thin films such as co-evaporation, electrode
position, selenization of sequentially stacked precur-
sors, etc. [3,10-12]. A high conversion efficiency of
19.9% at laboratory scale was reported via a three-
stage co-evaporation with a modified surface termin-
ation [3]. Also, the new record has been reported to
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achieving 20.3% last year [13]. Both of them have
high conversion efficiency, but they all have the same
disadvantages that the method is sophisticated and
needs an expensive vacuum technology. However,
electrodeposition is a competitive method that is eco-
nomic and convenient. It also has high deposition
speed and can prepare large area films [14]. Though
the conversion efficiency of one-step electrodeposition
is much lower than that of co-evaporation method, it
can be improved by annealing and selenization.
As is well known, nanostructures can mostly improve

properties of materials at a certain aspect [15-20]. In re-
cent years, much effort has been devoted to fabricating
CIS/CIGS nanowires and nanotubes, trying to improve
cell properties through changing their microstructures
[21-24]. Herein, we firstly fabricated CIGS nanopore
films using one-step electrodeposition method based on
anodized aluminum oxide (AAO) templates. Due to the
high specific surface area and the porous structure, the
ordered CIGS nanopore films could be used in light-
trapping solar cells and photoelectrochemical water
splitting. AAO templates are used to confine the struc-
ture of the film during the process of growth. The
film, after being annealed at 550°C, shows a better
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performance in crystallization through analyzing by
Raman spectroscopy and X-ray diffraction. Mechanism
of deposition has also been discussed.

Methods
The fabrication process of CIGS nanopore film is
shown schematically in Figure 1. AAO templates have
been used as the substrate in the experiment, and the
AAO templates were prepared by a two-step method
which was described in our previous work [25]. Anodi-
zation of Al foil was carried out in 0.25 M H3PO4 elec-
trolyte (C2H5OH/H2O = 1:4 v/v) at 195 V while the
temperature was kept at −5°C. Then, the as-prepared
AAO films were immersed in 5 wt.% phosphoric acid
at 45°C for about 40 min to get a proper pore diam-
eter. A layer of gold was sputtered on the AAO tem-
plate with the power of 100 W for 3 min. CIGS thin
films were deposited on Au-coated AAO template via a
three-electrode configuration. It consists of a reference
electrode (saturated calomel electrode (SCE)), a counter
electrode (graphite), and the working electrode (Au-
coated substrate). The electrodepositing bath contains
2 mM CuCl2, 6 mM InCl3, 16 mM GaCl3, 4 mM
H2SeO3, and 0.17 M LiCl. LiCl serves as the support-
ing electrolyte. The pH was adjusted to 2.2 by NaOH
buffer. The experiment with the applied potential of
−0.8 V (vs. SCE) was carried out for 20 min at room
temperature. The as-prepared CIGS films were rinsed
with deionized water and dried with nitrogen. Then,
the films were annealed at different temperatures with
the heating rate of 10°C/min in a vacuum tube furnace
for 30 min.
The morphology of as-prepared and annealed CIGS

films was observed by field emission scanning elec-
tron microscopy (FE-SEM; Philips Sirion 200, Philips,
Netherlands). The composition was investigated by
energy-dispersive X-ray spectrometer (EDS) system
attached to FE-SEM. The Raman spectra were mea-
sured by LabRam HR 800 UV system (Jobin Yvon,
France). The crystallographic structure was deter-
mined by X-ray diffraction (XRD; D8 DISCOVER X-
ray diffractometer, Bruker, Germany) with Cu Kα ra-
diation (λ = 1.54Å).
Figure 1 Fabrication process of ordered CIGS nanopore films. (a) AAO
edge. (b) Au film sputtered on the top of the AAO template. (c) Ordered C
Results and discussion
Surface morphology
Figure 2a shows a FE-SEM image of typical AAO tem-
plate prepared by a two-stepoxidization method. From
the figure, we can see the typical hexagonally arranged
shape of the pore of AAO template. The average diam-
eter of nanopores is about 220 nm, which could be
adjusted to about 250 nm by immersing in 5 wt.% phos-
phoric acid for 40 min. Au-coated AAO template with a
diameter of 242 nm has been shown in Figure 2b, corre-
sponding to the diameter of AAO template after being
adjusted. Figure 2c is the FE-SEM image of as-grown
CIGS nanopore film deposited on Au-coated AAO
membrane. It can be seen in the figure that the as-
grown CIGS nanopore film has the same morphology
with AAO substrate, ordered and hexagonally arranged,
and consists of small grains. Figure 2d shows the morph-
ology of CIGS nanopore film annealed at 550°C. It is
similar with the as-grown films in shape, but the surface
is getting smoother and the grain size is much bigger.
The pore diameters of as-grown and annealed films are
131 and 89 nm, respectively. Compared with thatof
AAO substrate, they are much smaller, indicating a
thickness limit of CIGS nanopore films.
Figure 3 displays the EDS spectrum of as-grown films

together with that annealed at 550°C. From the spectrum,
energy response of the four elements including copper, in-
dium, gallium and selenium can be easily recognized.
Through the table inserted in Figure 3, we know the as-
grown film is approximately equal to the ideal stoichio-
metric ratio of chalcopyrite CIGS films with the Cu, In,
Ga, and Se atomic ratio of 1:0.65:0.35:1.86. However, the
ratio has been slightly changed after the film had been
annealed. With the annealing process, the component of
selenium has clearly decreased. Meanwhile, the compo-
nent of indium has increased. The result may suggest pro-
ducing a film with higher selenium content or adding a
selenium source in the tube furnace to maintain the stoi-
chiometric ratio.

Structure characterization
Figure 4 shows the Raman spectra of CIGS nanopore
films prepared at room temperature and annealed at
template with Al foil at the bottom and surrounding on its outside
IGS nanopore film deposited on the Au-coated substrate.



Figure 2 FE-SEM images of AAO template, Au-coated AAO template, and as-grown and annealed CIGS nanopore films. (a) Top view of
the AAO template prepared by high-field anodization method. (b) Au-coated AAO template after broadening the pores. (c) As-grown CIGS
nanopore film deposited with aqueous solution of 2 mM CuCl2, 6 mM InCl3, 16 mM GaCl3, and 4 mM H2SeO3. (d) CIGS nanopore film annealed at
550°C.

Figure 3 EDS spectrum of as-grown CIGS nanopore films and
that annealed at 550°C. Figure 4 Evolution of Raman spectra of CIGS nanopore films.
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400°C and 550°C in the Stocks frequency range from
100 to 400 cm−1. For CuInSe2, CuGaSe2 and CIGS are
all AIBIIIC2

VI chalcopyrite compounds; the active vibra-
tions of these compounds should be very close to each
other. The spectrum of as-grown films has two broad
peaks at about 180 and 240 cm−1, in agreement with the
A1 and E mode frequencies at 184 and 239 cm−1 of
CuGaSe2 obtained by Rincon and Ramirez [26]. The
spectrum of the films annealed at 400°C is similar to that
of as-grown films. However, when the annealing
temperature reached 550°C, the peak at 240 cm−1 disap-
pears and replaced by a broad peak at about 215 cm−1,
which is in agreement with the B2 mode in reports
[26,27]. Since the peak at 240 cm−1 is indexed by elem-
entary selenium due to trigonal selenium [27], the result
indicate the decrease of selenium in the films annealed
at 550°C, consistent with that of the EDS spectrum
(Figure 3). It cannot be ignored that there is a strong
peak at 174 cm−1 of films annealed at 550°C, corre-
sponding to the A1 mode of chalcopyrite compounds.
With the full width at half maximum (FWHM) value
of 7 cm−1, it indicates that the films annealed at 550°C
are pure chalcopyrite CIGS with improved crystallinity.
XRD patterns of CIGS nanopore films were shown in
Figure 5. Spectra of Au-coated and pure AAO tem-
plates were measured for comparison. The as-grown
CIGS films show chalcopyrite CIGS structure as seen
from the XRD spectrum because there is a broad peak
at 26.92° in agreement with (112) reflection (PDF#35-
1102). At the temperature of 400°C, the peak has be-
come sharpened. When the temperature increased to
550°C, the peak at 26.92° has been more prominent,
and a peak at 52.88° corresponding to (312) reflections
of chalcopyrite CIGS structure has arisen. The most
Figure 5 XRD patterns of as-grown CIGS nanopore film and
samples annealed at 400°C and 550°C, respectively. White circle
indicates Au; black circle, chalcopyrite Cu(In0.7Ga0.3)Se2.
prominent peak at about 45° is indexed by the reflec-
tion of Al2O3, which conceals the (220) reflection of
CIGS. From the XRD patterns, it shows that thermal
treatment improves crystallinity of the films, and the
size of grains increases after being annealed due to the
decrease in FWHM of the diffraction peaks, consistent
with the result of Raman spectra.

Process of growth
Figure 6 shows a set of FE-SEM images of CIGS nano-
pore films deposited for different times. From the SEM
images and EDS spectra, the process of growth of CIGS
nanopore films can be qualitatively discussed. In
Figure 6a,b, grains are easily deposited on the corner of
every single hexagonal Au-coated substrate for the first
30 to 90 s. When the deposition time continues to
10 min (see Figure 6c), the as-grown film gradually
covers the surface of Au-coated substrate. When the
films keep on depositing, grains will combine together
to form clusters. Then, the clusters grow bigger, and
finally, a thin film without porous structure was
formed (see Figure 6d). In addition, the morphology of
Figure 6d is different from that of Figure 2c because
the pores of the substrate have not been broadened.
Table 1 displays the elementary component of Cu, In,

Ga, and Se associated with the films shown in Figure 6.
It is obvious that Cu and Se are firstly deposited when
the three-electrode configuration works for 30 s. It
should be noted that this EDS spectrum was investigated
at such positions marked with a circle in Figure 6a. Most
area only shows the energy reflection of Cu. Subse-
quently, In and Ga were incorporated in the film by 90
and 600 s, respectively. The component of In and Ga
increases when the electrode keeps on working. The re-
duction succession corresponds to the standard reduc-
tion potential values of Se4+/Se, Cu2+/Cu, In3+/In, and
Ga3+/Ga which are +0.740, +0.342, −0.338, and −0.523 V
vs. standard hydrogen electrode, respectively. According
to the report of Saji et al. [14], the electrochemical
mechanism of CIGS deposition is not very different from
that of CIS. The early stages of the CIS film growth were
dominantly affected by Cu-rich phases. The deposition
of Se did not occur separately but only when the binary
Cu-Se phases have been deposited [28]. The formed Cu-
Se phase provided active sites for the In incorporation
[29]. Also, Calixto et al. reported that In incorporation
occurs by reacting with H2Se formed by previous Cu-Se
phase [30]. Another work reported by Lai et al. [31] sug-
gests an underpotential deposition mechanism that In3+

and Ga3+ reduction occurs by surface-induced effect
from Cu3Se2 and/or reaction with H2Se. Therefore, Cu-
Se phases are necessary in the incorporation of In and
Ga during the deposition of CIGS, which results in this
reduction succession as shown in Table 1.



Figure 6 FE-SEM images of CIGS nanopore films deposited under different times. (a) 30 s, (b) 90 s, (c) 600 s, and (d) 1,200 s.
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Conclusions
In summary, we firstly fabricated highly ordered CIGS
nanopore films. The deposited film reproduced the
morphology of the AAO substrate. With heat treatment,
the CIGS nanopore films present an almost pure chalco-
pyrite nanocrystal. Moreover, Cu-Se phases firstly occur
during growth of the film. Then, In and Ga incorporated
in the films through reactions with Cu-Se phases. This
large-scale ordered CIGS nanopore films could be used
in light-trapping CIGS solar cells and photocatalytic
hydrogen generation.
Table 1 Elementary component of Cu, In, Ga, and Se in
the as-grown CIGS nanopore films

Deposition time(s) Cu (at.%) In (at.%) Ga (at.%) Se (at.% )

30 44.44 - - 55.56

90 29.29 17.54 - 53.17

600 26.80 14.39 5.02 53.79

1,200 24.24 23.79 6.51 45.46
Abbreviations
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