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Abstract

Single-crystalline iridium dioxide nanowires show the time-dependent universal conductance fluctuations (TUCFs) at
cryogenic temperatures. The conductance fluctuations persist up to temperature T as high as nearly 10 K. The
root-mean-square TUCF magnitudes increase with decreasing T, reaching approximately 0.1 e2/h at 1.7 K. We ascribe
these conductance fluctuations to originating from the conduction electrons scattering upon mobile defects (moving
scattering centers). Our measured TUCF characteristics are satisfactorily explained in terms of the existing TUCF theory
in its three-dimensional form. The extracted electron dephasing length Lϕ (1.7 K) � 90 nm is smaller than the diameter
(≈ 180 nm) of our nanowires.
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Background
Quantum-interference effects often manifest in the elec-
tronic transport properties of miniature conductors at
cryogenic temperatures [1,2]. The recent development
in nanoscale material synthesis methods has made the
fabrications of quasi-one-dimensional (Q1D) nanowires
widely accessible. One of the experimental realizations
of the marked quantum-interference effects is the obser-
vation of the universal conductance fluctuations (UCFs)
[1-3] in Q1D metallic [4,5] and heavily doped semicon-
ductor [6,7] nanowires. In sharp contrast to the classical
thermal noise, the UCF magnitudes increase with reduc-
ing temperature T [8-11], owing to the inherent quantum
nature of the electronwaves traversing in a weakly random
potential. In the limit of T → 0, the root-mean-square
UCF magnitudes are theoretically predicted to reach a
universal value of Ce2/h, where the constant C depends
on sample dimensionality and is of order unity in one,
two and three dimensions. A weakly random potential
realized in a given sample corresponds to a specific impu-
rity configuration. In the case of the presence of static
defects alone, magnetic-field (and Fermi-energy, via a
back-gate voltage) dependent UCFs can be observed. This
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kind of aperiodic UCF ‘magneto-fingerprints’ are largely
reproducible if the sample is constantly kept at low tem-
peratures and thus, the impurity configuration remains
unaltered during the course of the measurement. Such
magnetic-field dependent UCFs have been commonly
observed in the past three decades [12-15]. The second
kind of conductance fluctuations is the time-dependent
UCFs (TUCFs) which have rarely been seen in experi-
ments using conventional lithographic metal mesoscopic
structures [16-18]. Recently, two of the authors have
observed pronounced TUCFs in single-crystalline RuO2
nanowires grown by the thermal evaporation method [4].
The TUCF signals persisted up to as high as T > 10 K.
The measured TUCFs were ascribed to originating from
the scattering of conduction electrons withmobile defects,
i.e., moving scattering centers [19]. A quantitative com-
parison with the existing theoretical predictions [20,21]
was satisfactory and, in particular, the number of mobile
defects in a phase-coherent volume had been inferred.
The mobile defects were proposed to be associated with
certain point defects (e.g., oxygen vacancies) which were
contained in the as-grown nanowires.
In this paper, we would like to show that notable TUCFs

also exist in single-crystalline iridium dioxide (IrO2)
nanowires grown by the distinctly different metal-organic
chemical vapor deposition (MOCVD) method. Taking
together the results obtained in these two complimentary
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RuO2 and IrO2 nanowire experiments, we demonstrate
that mobile defects are common and rich in conducting
metal oxide nanowires with rutile structure, regardless
of how the nanowires are synthesized. This observation
could have important bearing on the fundamental under-
standing and future applications of nanoscale metallic
oxide materials. We would like to mention that TUCFs
in conventional metal mesoscopic structures fabricated
by physical deposition in conjunction with lithographic
method only occur at sub-kelvin temperatures [16-18].

Methods
Single-crystalline IrO2 nanowires were grown by the
MOCVD method. The morphology and atomic struc-
ture of the nanowires were studied by scanning electron
microscopy (SEM) and transmission electron microscopy.
Four-probe single nanowire devices were fabricated by the
electron-beam lithography, as described previously [22].
(The inset of Figure 1 shows an SEM image of the NW1
device taken from [22]. In [22], the electrical transport
properties of the two NW1 and NW2 nanowire devices
had been studied at high temperatures of 30 to 300 K.)
The resistance measurements were performed on a stan-
dard 4He cryostat. A Linear Research LR-700 ac resistance
bridge (Linear Research Inc., San Diego, CA, USA) oper-
ating at a frequency of 16 Hz was employed for resistance
measurements. An excitation current of� 100 nA (so that
the voltage drop � kBT/e, where kB is the Boltzmann
constant, and e is the electronic charge) was applied to

Figure 1 Variation of normalized resistance R(T)/R (30 K) with
logarithm of temperature for the NW1 device. The insets show
the resistance as a function of temperature between 1.7 and 300 K
and an SEM image of the NW1 device taken from [22].

avoid joule heating. Table 1 lists the parameters of the two
nanowires studied in this work.

Results and discussion
The inset of Figure 1 shows the temperature dependence
of resistance for the NW1 device from room temperature
down to 1.7 K. This figure clearly reveals that the over-
all electrical transport property of this single-crystalline
nanowire is metallic, as previously established theoreti-
cally [23] and experimentally [22,24]. At temperature T
below about 50 K, the resistance increases slightly with
further reduction of T, suggesting that this nanowire lies
in the weakly disordered regime of kFl > 1, where kF is
the Fermi wavenumber, and l is the electron mean free
path (kFl ≈ 6 in this particular nanowire). The small rela-
tive resistance increase of R(1.7 K) / R(50 K) � 1.014 can
arise from the contributions of the weak localization and
electron-electron interaction effects [2,25] (and possibly
also from other effects such as the two-level tunneling
systems [4,26]).
The main panel of Figure 1 plots the normalized resis-

tance, R(T) / R(30 K), as a function of temperature for
T < 60 K. The nanowire resistance was recorded while
the temperature was decreased relatively slowly. What is
most interesting in this figure is the notably increased
resistance distribution at a fixed T as the temperature is
lowered to approximately below 6 K. As shown in the
previous studies [4,16-18], this increased resistance distri-
bution with decreasing temperature directly manifests the
TUCF behavior whose origin is the existence of moving
scattering centers in this particular nanowire. As a con-
sequence, the measured resistance is a function of time
at a given temperature. This observation comprises the
central theme of this paper. This resistance distribution
reflects the presence of the TUCF phenomenon. Thus,
we shall argue in our succeeding discussion that a small
fraction of the point defects contained in our as-grown
nanowires must be the mobile defects. It should be noted
that the TUCFs are originated from an inherent quantum-
interference mechanism. Contrary to the thermal noise,
the fluctuation magnitudes of the TUCFs progressively
diminish as the temperature increases.

Table 1 Values of relevant parameters for two IrO2
nanowire devices

Device d (nm) L (μm) ρ(300K)
(μ� cm)

ρ(10K)
(μ� cm)

D
(cm2/s)

l (nm)

NW1 ≈ 180 ≈ 0.83 295 270 1.6 0.74

NW2 ≈ 180 ≈ 0.83 220 185 2.4 1.08

d is the diameter, L is the voltage probe distance in a four-probe geometry, D is
the electron diffusion constant, and � is the electron mean free path. D and l are
for 10 K.
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We discuss the TUCF features in a more intuitive man-
ner. In Figure 2, we plot the resistance as a function of
time for the NW1 device at several T values below 10 K.
Inspection of this figure clearly indicates that, at a given
T, the resistance fluctuates with time. There exist both
overlapping fast fluctuations and individual slow fluctu-
ations (the slow ones are indicated by arrows in some
of them). In particular, the magnitudes of the fast fluc-
tuations increase with decreasing temperature. As the
temperature increases to about 10 K, the fast fluctua-
tions disappear to within our experimental error (i.e., our
instrumental noise), while the slow fluctuations mimic
random telegraph noise [27]. In order to compare with
the existing TUCF theory of Feng [21], we shall focus our
discussion on the fast resistance fluctuations in this paper.
Figure 3 plots the temporal variation of the conductance

fluctuations δG = G − 〈G〉 in units of the quantum con-
ductance e2/h for the NW1 device at T = 1.73 K, where
〈G〉 is the measured conductance G = 1/R averaged over
time. It can be seen that the ‘peak-to-peak’ conductance

Figure 2 Variation of resistance with time for the NW1 device.
Resistance as a function of time for the NW1 device at five
temperatures, as indicated. The resistances at 8.0, 4.2, 2.8, and 1.73 K
have been offset by 2, 4, 6, and 8 �, respectively, for clarity. The
arrows indicate four slow fluctuations occurring at ≈ 280, ≈ 370,
≈ 760, and ≈ 945 s in the resistance curve for T = 4.2 K.

Figure 3 TUCFs for the NW1 device. Conductance variation
δG = G − 〈G〉 versus time for the NW1 device at T = 1.73 K plotted in
units of the quantum conductance e2/h.

fluctuation magnitude reaches ≈ 0.1 to 0.2 e2/h. This
result of a fraction of e2/h at low T provides a meaning-
ful indication that our measured conductance fluctuations
are associated with the TUCF phenomenon [4,21].
In order to quantitatively analyze the fast TUCFs, we

evaluate the root-mean-square magnitude of the conduc-
tance fluctuation defined by δGrms = √〈(G − 〈G〉)2〉,
where 〈. . .〉 denotes the averaging over a proper time
interval while excluding the slow fluctuations. Figure 4
plots δGrms as a function of T in double-logarithmic
scales for the NW1 and NW2 devices studied in this
work. This figure clearly demonstrates that our measured
δGrms increases with decreasing T in both nanowires. As
T increases to about 10 K, the size of δGrms becomes
indistinguishable from the instrumental noise (our instru-
mental noise level is ≈ 0.01 e2/h in the present study;
therefore, the data points at 20 K in Figure 4 are only
plotted for reference).
Theoretically, the TUCFs in different sample dimen-

sionalities and under different conditions have been stud-
ied by Al’tshuler [8,9] and Lee, Stone, and Fukuyama
[10,11]. In particular, Feng and coworkers [20,21] have
proposed that the TUCFs are very sensitive to the motion
of single or a few mobile defects. In order to interpret our
TUCF data, it is important to identify the effective sample
dimensionality of our IrO2 nanowires. In the quantum-
interference studies, the effective nanowire dimensional-
ity is determined by the ratio of the electron dephasing
length Lϕ to the nanowire diameter d. A nanowire lies
in the Q1D regime if Lϕ/d � 1, and in the three-
dimensional (3D) regime if Lϕ/d � 1. We have found that
our measured δGrms(T) definitely cannot be consistently
described by the Q1D form of the TUCF theory, because
using the Q1D form would always lead to an extracted Lϕ

smaller than d. Therefore, we have turned to compare our
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Figure 4 Root-mean-square conductance fluctuation magnitude
δGrms as function of temperature for NW1 and NW2 devices. The
dot-dashed, dashed, and dotted curves are the theoretical predictions
of Equation 1 with the exponent of temperature p = 2, 3, and 4,
respectively, for the electron-phonon relaxation rate 1/τep = AepTp .
The inset shows the extracted electron dephasing length Lϕ as a
function of temperature for the two nanowires. The dashed curve
indicates a T3 temperature dependence. The data points at 10 K could
be subject to large uncertainties and are only drawn for reference.

results with the 3D theoretical form. Feng predicted that
for a 3D sample and in the ‘saturated’ regime, the TUCF
magnitudes are given by [21]

(δGrms)
2 = 28.2〈G2〉 1

k4F�2
Lϕ

Ld2
, (1)

where L (> Lϕ) is the nanowire sample length. In the the-
ory, the so-called saturated regime refers to the regime
with the parameter β � (�/Lϕ)2, where β stands for the
ratio of the number of mobile defects to the number of
total (static and mobile) defects.
We have carried out least-squares fits of our mea-

sured δGrms(T) to the predictions of Equation 1, using
Lϕ = √

Dτϕ as the sole adjustable parameter, where
D is the electron diffusion constant, and τϕ is the T
dependent electron dephasing time. Explicitly, in a 3D
weakly disordered conductor, the total electron dephas-
ing rate is essentially given by two contributions [28,29]:
1/τϕ = 1/τ 0ϕ + 1/τep, where the first contribution 1/τ 0ϕ
is a constant or a very weakly T-dependent term [30,31],
and the second contribution 1/τep = AepTp denotes
the electron-phonon relaxation rate, with Aep being the
electron-phonon coupling strength, and p being an expo-
nent of temperature. In general, the value of p depends
on the measurement temperature interval as well as the
degree of disorder in the sample. Typically, 2 ≤ p ≤ 4 in
3D metals [30-32].

Since the NW1 and NW2 devices reveal overall simi-
lar TUCF features (except that the TUCF magnitudes in
the latter are somewhat smaller than those in the for-
mer), we shall concentrate the following discussion on the
NW1 device. Our fitted results with the exponent of tem-
perature p being fixed to be 2, 3, or 4 are shown by the
dot-dashed, dashed, and dotted curves, respectively, in the
main panel of Figure 4 (for simplicity, we chose the value
of p to be an integer in our least-squares fits to Equation 1).
Inspection of this figure indicates that Equation 1 can
satisfactorily describe the experimental results. The fit
with the exponent p = 3 gives a slightly (notably) better
description than that with p = 4(2). Numerically, our fit-
ted values of the relevant parameters for the NW1 device
are listed in Table 2. The extracted electron-phonon cou-
pling strength Aep ≈ 4 × 109 K−p s−1 is compatible to
that previously found in normal metals, such as RuO2
nanowires [4] and AuPd wires and films [28,29].We would
like to note in passing that a more quantitative extrac-
tion of the value of pwould require further measurements
on, e.g., the magnetoresistances in the weak-localization
effect [25,28,29].
Our extracted Lϕ values at different temperatures

between 1.7 and 10 K are plotted in the inset of Figure 4.
We obtain a relatively short Lϕ(1.7 K) ≈ 90 nm in the
NW1 device.Moreover, Lϕ decreases rapidly with increas-
ing T, reaching a small size of Lϕ(8 K) ≈ 10 nm. The
extracted relatively short Lϕ values may partly arise from
non-negligible experimental uncertainties. First, our mea-
sured TUCF magnitudes are small, which render large
uncertainties in the separation and evaluations of δGrms
from the background instrumental noise (experimentally,
our TUCF signals become hardly distinguished from the
instrumental noise as T � 8 K). Second, our nanowires
with diameters of 180 nm may fall close to the 1D-
to-3D crossover regime with regards to the quantum-
interference effects, instead of falling deep in the 3D
regime. Therefore, Equation 1 is probably only about to
become fully valid (however, we would like to remind that
our data definitely cannot be described by the 1D form of
TUCF theory). Third, the determination of the relevant
sample volume Ld2 is subject to some uncertainties. In any
case, note that we obtain Lϕ < d over our measurement
T range; hence, the 3D TUCF phenomenon in this NW1
device is more or less justified.

Table 2 Values of fitted parameters for the electron
dephasing rate 1/τϕ = 1/τ0

ϕ + AepTp in NW1 device

Exponent p 1/τ0
ϕ (s−1) Aep (K−p s−1)

2 ≈ 1×109 ≈ 6×109

3 ≈ 7×108 ≈ 4×109

4 ≈ 5×108 ≈ 2×109
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Conclusions
We have observed TUCFs at cryogenic temperatures in
metallic single-crystalline IrO2 nanowires grown by the
MOCVD method. The TUCFs originate from the scat-
tering of conduction electrons upon mobile defects. Our
measured TUCFmagnitudes as a function of temperature
are satisfactorily described by the existing theory in the
three-dimensional regime. Taken together with our pre-
vious observations in single-crystalline RuO2 nanowires
grown by the distinctly different thermal evaporation
method [4], the present study indicates that moving scat-
tering centers may be common to the conducting metal
oxide rutile nanostructures, regardless of how they are
synthesized. Our observations could have important bear-
ing on the fundamental research and technological appli-
cations of synthetic metal oxide nanoelectronic devices.
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