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Abstract

The coupling between DNA molecules and quantum dots can result in impressive nonlinear optical properties. In this
paper, we theoretically demonstrate the significant enhancement of Kerr coefficient of signal light using optical
pump-probe technique when the pump-exciton detuning is zero, and the probe-exciton detuning is adjusted
properly to the frequency of DNA vibrationmode. Themagnitude of optical Kerr coefficient can be tuned bymodifying
the intensity of the pump beam. It is shown clearly that this phenomenon cannot occur without the DNA-quantum
dot coupling. The present research will lead us to know more about the anomalous nonlinear optical behaviors in the
hybrid DNA-quantum dot systems, which may have potential applications in the fields such as DNA detection.
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Background
Biomaterials are now drawing more and more attention
since they often present special properties which are
not easily obtained from traditional inorganic or organic
materials. In addition, biomaterials come from renewable
resources and are usually biodegradable. Among biomate-
rials, researches have been interested in DNA for various
reasons, such as potential applications of DNA assem-
bly in molecular electronic devices [1], nanoscale robotics
[2], and DNA-based computation [3]. One of the most
interesting applications in DNA is to use DNA as a kind
of optoelectronic material. Thin film of DNA-CTMA has
been used successfully in various applications such as
organic light emitting diodes, a cladding and host material
in nonlinear optical devices, and organic field-effect tran-
sistors because of its nature of large dielectric constant
and large band gap [4]. DNA-based polymers are utilized
in optically pumped organic solid-state lasers [5]. A better
understanding of the nonlinear optical properties of DNA
materials will undoubtedly lead us to more exciting appli-
cations. So, many researches on nonlinear optical prop-
erties of DNA materials have been undertaken. Samoc
et al. have studied the nonlinear refractive index and the
two-photon absorption coefficient of native (sodium salt)
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DNA [6]. Second harmonic generation of DNA assemblies
in the form of DNA-CTMA has been characterized both
theoretically and experimentally by Wanapun et al. [7].
Krupka et al. investigated the third-order nonlinear opti-
cal properties of thin films of DNA-based complexes with
optical third harmonic generation technique [8]. Nonlin-
ear optical properties of different materials based on DNA
are under investigation currently.
In this paper, we theoretically propose and analyze some

nonlinear optical properties in a DNA-quantum dot cou-
pling system, which have remained unexplored to date.
We investigate DNA molecules coupled to the peptide
quantum dot with the optical pump-probe technique.
This technique has been realized by several groups [9-13],
which shows the probability for experimental realization.
Since photodetection technology is well developed, for
instance with the assistance from quantum dot [14], we
can expect to observe some properties of DNA molecules
by detecting the weak probe beam. However, toxicity
should always be cared about when DNA molecules are
used together with nanomaterials as has been tested in
[15], so a problem we need to pay attention to is that
the metallic quantum dots used in biological assays are
always toxic. Recently, Amdursky et al. [16,17] have shown
that the peptide quantum dot is nontoxic to the environ-
ment and biological tissues. This kind of quantum dot
is a good choice of new labeling materials in biological
and biomedical experiments. Most recently, the coherent
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optical spectrum in such a quantum dot-DNA system has
been studied by Li and Zhu [18].
In the system, the vibration mode of DNA molecules

makes a great contribution to this coupled system so
that the optical Kerr effect can be enhanced significantly.
This optical Kerr effect can also be switched by adjusting
the intensity of the pump beam while leaving the other
parameters unchanged. In view of these novel properties,
we propose a method to measure the frequency of the
vibration mode of DNA molecules.

Methods
To understand our system, we consider one of the large
amount of DNA-quantum dots (DNA-QDs) in actual
reagent as shown in Figure 1. The DNA-QD system is
driven by a strong pump field and a weak probe field. A
two-level system (the ground state |g > and the excited
state |ex >) can be chosen as the model for quantum dot,
which are dressed by the DNA vibrationmode as shown in
Figure 1. This two-level system can be described with the
pseudo-spin 1 and the corresponding operators are σ+, σ−
and σz. The Hamiltonian of quantum dot can be written
as HQD = �ωegσz, where ωeg = ωex − ωg is the exciton
frequency of quantum dot.
The DNA molecules in our study are modeled as har-

monic oscillators [19] and almost have no difference
between them, which is not difficult to realize with bio-
logical techniques. The Hamiltonian of DNA molecules
is

HD =
n∑

j=1

(
p2j
2mj

+ 1
2
mjω

2
j q

2
j

)
, (1)

where the commutation relation [ qj, pj]= i� is satis-
fied [20].

The damping of the longitudinal vibration mode of the
DNA molecules is fairly small in a small volume of aque-
ous solution [20], though the DNA vibrational modes
decay quickly. Therefore, in small volume of aqueous
solution, the only vibration mode we care about is the
longitudinal vibration mode. In addition, flexion of DNA
molecules will result in extensions and compressions of
the model, which will finally lead to the modification of
the quantum dot levels through the longitudinal strain
[21,22]. The Hamiltonian caused by the coupling of DNA
molecules and a quantum dot has the form as follows:

HQD-DNA = �σz

n∑
j=1

κjqj, (2)

where κj is the coupling strength between quantum dot
and the jth DNA molecule, and the quantum dot is cou-
pled to n DNA molecules. Because of the diluted aqueous
solution of DNA molecules, we do not take the coupling
between DNA molecules into consideration [20].
The coupling between QD and optical fields is

HQD−f = −μ[Epσ+exp(−iωpt) + E∗
pσ−exp(iωpt)]

−μ[Esσ+exp(−iωst) + E∗
s σ−exp(iωst)] , (3)

where μ is the electric dipole moment of the exciton and
Ep(Es) and ωp(ωs) are the amplitude and frequency of the
pump-probe field, respectively.

Figure 1 DNA and peptide quantum dot coupling system. A peptide QD coupled to DNA molecules in the simultaneous presence of two
optical fields. The energy levels of QD when dressing the vibrational modes of DNA molecules are also shown in this figure.
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Now we get the Hamiltonian of the QD-DNA system,

H = HQD + HD + HQD-DNA + HQD−f

= �ωegσz +
n∑

i=1

(
p2i
2mi

+ 1
2
miω

2
i q

2
i

)
+ �σz

n∑
i=1

κiqi

−μ[Epσ+exp(−iωpt) + E∗
pσ−exp(iωpt)]

−μ[Esσ+exp(−iωst) + E∗
s σ−exp(iωst)] . (4)

In the rotating frame at ωp, the Hamiltonian becomes

H = ��pσz+
n∑

i=1

(
p2i
2mi

+ 1
2
miω

2
i q

2
i

)
− �(�pσ+ + �∗

pσ−)

+�ϑσz − μ[Esσ+exp(−iδt) + E∗
s σ−exp(iδt)] , (5)

where �p = ωeg − ωp, ϑ = ∑n
j=1 κjqj, �p = μEp/� is

the Rabi frequency and δ = ωs − ωc is the probe-pump
detuning.
With this Hamiltonian, we can obtain the equations of

motion for σz, σ−, and ϑ via Heisenberg equation and
introduce some damping parameters such as 	1, 	2 and
τD [23]. 	1 is the exciton relaxation rate and 	2 is the
dephasing rate. τD is the vibrational lifetime of DNA. By
introducing the corresponding damping and noise terms
[24,25], the equations are as follows:

dσz
dt

= −	1(σz + 1) + i�p(σ+ − σ−)

+ iμEsexp(−iδt)
�

σ+ − iμE∗
s exp(iδt)
�

σ−, (6)

dσ−
dt

= −(i�p + iϑ + 	2)σ− − 2i�pσz

−2iμEsexp(−iδt)
�

σz + Fn, (7)

d2ϑ
dt2

+ dϑ

τDdt
+ ω2

Dϑ = −λω2
Dσz + ξn, (8)

where λ = ∑n
j=1

�κ2j
mjω2

D
is the coupling strength of DNA

molecules and quantum dot. ωD is the frequency of
DNA longitudinal vibrational modes. The δ-correlated
Langevin noise operator Fn represents the coupling
between ϑ and σ−, the main cause of the decay of vibra-
tion mode. Fn has zero mean value < Fn >= 0 and the
correlation relation < Fn(t)F+

n (t′) >∼ δ(t− t′). The oper-
ator ξn stands for the Brownian stochastic force, since the
thermal bath of Brownian and non-Markovian processes
will affect the vibration mode of DNA molecules [24,26].
The quantum effects on the DNA are only observed in
the case ωDτD >> 1. The Brownian noise operator can
be modeled as Markovian with the decay rate 1/τD of the
vibration mode. Therefore, the Brownian stochastic force
has zero mean value < ξn >= 0 and can be expressed
as [26]

<ξ+(t)ξ(t′)>= 1
τDωD

∫ 1+coth( �ω
2kBT )

2π
ωe−iω(t−t′)dω.

(9)

With the standardmethods of quantum optics, the steady-
state solution of Equations 6, 7, and 8 are expressed as
follows when setting all the time derivatives to zero:

σ0 = 2i�pσ0z
iλσ0z − 	2 − i�p

, ϑ0 = −λσ0z, (10)

where σ0z is determined by Equation 15. To extend this
formalism beyond weak coupling, we can always rewrite
each Heisenberg operator as the sum of its steady-state
mean value and a small fluctuation with zero mean value
as follows: σ− = σ0 + δσ−, σz = σ0z + δσz, and ϑ = ϑ0 +
δϑ , which should be substituted into Equations 6, 7, and 8.
We can neglect the nonlinear term δϑδσ− safely. Since the
optical drives are weak and classical, we will identify all
the operators with their expectation values and omit the

(a) (b)

Figure 2 The optical Kerr coefficient of probe beam (in units of �m) with pump beam on-resonance. (a) The optical Kerr coefficient and
nonlinear absorption as functions of probe-exciton detuning �s in the case λ = 0. (b) The optical Kerr coefficient and nonlinear absorption as
functions of probe-exciton detuning �s in the case λ = 2 GHz.
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quantum and thermal noise terms [9]. Then the linearized
Langevin equations can be written as follows:

< ˙δσz > = i�p(< δσ ∗− > − < δσ− >) − 	1 < δσz >

+ iμEsexp(−iδt)
�

< δσ ∗− >

− iμE∗
s exp(iδt)
�

< δσ− >, (11)

< ˙δσ− > = −(i�p + 	2) < δσ− > −2i�p < δσz >

−i(ϑ0 < δσ− > + < δϑ > σ0)

−2iμEsexp(−iδt)
�

< δσz >, (12)

< ¨δϑ > +< ˙δϑ >

τD
+ ω2

D < δϑ >= −λω2
D < δσz > .

(13)

From the approximations < δσz >= σ+
z exp(−iδt) +

σ−
z exp(iδt), < δσ− >= σ+exp(−iδt) + σ−exp(iδt) and

< δϑ >= ϑ+exp(−iδt) + ϑ−exp(iδt) [27], we can obtain:

(−	1λ
2)σ 3

0z+(
−	1λ2

2
+2	1λ�p)σ

2
0z+(−	1�

2
p−	1	

2
2

+	1λ�p−4	2�
2
p)σ0z=

1
2
	1	

2
2 + 1

2
	1�

2
p.

(14)

Now we get σ0z. Then σ0 and ϑ0 are also known. All of
the equations can then be solved completely. We finally
obtain the part we are interested in, the equation:

σ− = Z(δ)σ−
z , (15)

where the equations used areG(δ) = (λω2
D)/(δ2+ iδ/τD−

ω2
D), Z(δ) = (σ0G∗ + 2�p)/(i	2 − δ − �p − ϑ0), F(δ) =

(σ0G + 2�p)/(i	2 + δ − �p − ϑ0), σ0 = −2i�pσ0z
	2+i�p−iλσ0z

,
ϑ0 = −λσ0z and finally

σ+
z = iμEsσ ∗

0 (i	2 + δ − �p − ϑ0) − 2iμEs�pσ0z
�(iG�p−iZ∗�p+	1−iδ)(i	2+δ − �p−ϑ0)

.

(16)

We can use the equations above and σ−
z = σ+∗

z to obtain
the nonlinear optical susceptibility:

χ(ωs)
(3)
eff = Nμ3σ−

3ε0�2�2
pE∗

s
= �mχ3(ωs), (17)

where N is the number density of DNA-QDs and
�m = Nμ4

3ε0�3	3
2
.

Results and discussion
To show the numerical results, we choose the realistic
quantum dot-DNA system, in which a peptide quantum
dot is coupled to several DNA molecules as illustrated in
Figure 1. Although the DNA molecules in solution form
can be distorted in mess, one can extend these molecules
into linear form with electromagnetic field or fluid force
[28]. In addition, the longitudinal vibrational frequency
can be affected by the length of DNA molecules, which
could just be considered as a factor affecting vibration fre-
quency. In the theoretical calculation, we choose ωD = 40
GHz and τD = 5 ns as the vibration frequency and life-
time of DNA molecules [22,29-31]. For our study, we can
safely select the decay rate of the peptide quantum dot as
	1 = 16 GHz for any practical purpose [32].
Figure 2a plots the optical Kerr coefficient Reχ(3)

eff (solid
curve) and nonlinear absorption Imχ

(3)
eff (dash curve) as

functions of probe-exciton detuning �s = ωs − ωeg with
�p = 0 and λ = 0, while Figure 2b shows optical Kerr
coefficient Reχ(3)

eff (solid curve) and nonlinear absorption
Imχ

(3)
eff (dash curve) as functions of probe-exciton detun-

ing �s = ωs − ωeg with �p = 0 but λ = 2 GHz. It
demonstrates that if we fix the pump beam on-resonance
with the exciton frequency and scan the probe beam,
we can obtain the large enhanced optical Kerr effect at
ωs = ωeg − ωD and ωs = ωeg + ωD. The origin of this
phenomenon is the quantum interference between the
vibration mode of DNAmolecules and the beat of the two
optical fields via the exciton when probe-pump detuning
δ is adjusted equal to the frequency of the vibration mode

(a) (b)

Figure 3 Optical Kerr coefficient of probe beamwith various coupling strengths and vibration lifetimes. (a) The optical Kerr coefficient (in
units of �m) as functions of probe-exciton detuning �s with pump beam on-resonance (�p = 0) and different coupling strengths. (b) The optical
Kerr coefficient (in units of�m) as functions of probe-exciton detuning�s with pump beam on-resonance (�p = 0) and different vibration lifetimes.
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(a) (b)

Figure 4 Optical Kerr coefficient of probe beamwith various Rabi frequencies of pump beam. (a) The optical Kerr coefficient (in units of �m)
as functions of probe-exciton detuning �s with pump beam off-resonance(�p = ωD) and different Rabi frequencies. (b) The detailed part of (a)
showed the relation between optical Kerr coefficient and Rabi frequency.

of DNA molecules. If we ignore the coupling, λ = 0, the
enhancement of optical Kerr effect will disappear com-
pletely as has been demonstrated in Figure 2a. Therefore,
the importance of the coupling between quantum dot and
DNAmolecules is obvious since the enhancement of opti-
cal Kerr effect could not occur in such a system when
λ = 0. Furthermore, we can propose a scheme to measure
the frequency of the vibration mode of DNA molecules
by making use of the phenomenon above. From Figure 2b,
we can clearly see that as the frequency of the vibration
mode is ωD = 40 GHz, the two sharp peaks at ±40 GHz
just match the mode frequency. This means that if we first
adjust pump beam properly and scan the probe frequency
across the exciton frequency in the spectrum, we can eas-
ily obtain the accurate vibration frequency of DNA, which
implies some future potential applications.
To explore the phenomenon above more carefully, we

show the optical Kerr coefficient Reχ(3)
eff as functions of

probe-exciton detuning �s = ωs − ωeg with �p = 0
and different coupling strengths and vibration lifetimes
in Figure 3a,b respectively. In Figure 3a, we see that
the larger the coupling strength is, the higher the opti-
cal Kerr coefficient peak will be. Figure 4a shows that
the optical Kerr coefficient peak increases monotonously
with vibration lifetime τD. We should not feel surprised
about these results. Since the optical Kerr coefficient peak
is caused by the coupling between DNA molecules and
quantum dot, the peak will become more and more obvi-
ous when the coupling makes stronger. These results
demonstrate that the coupling plays a key role in such a
coupled system.
Figure 4a presents optical Kerr effects as functions of

�s with �p = ωD and different Rabi frequencies of the
pump field, whose detail is shown in Figure 4a. We first
notice that the probe beam experiences different opti-
cal Kerr coefficients when appearing in the pump beams
with different intensities. When we pay attention to the

detail (shown in Figure 4a), we find that by increasing the
intensity of the pump beam, the optical Kerr effect will
be weakened significantly. Therefore, we can see that the
magnitude of optical Kerr effect can be tuned by control-
ling the light intensity, implying a method for regulating
the nonlinear optical features of DNAs via coupling to
quantum dots.

Conclusions
In conclusion, we have proposed a theoretical model for
DNA-quantum dot hybrid system in the presence of a
strong pump laser and a weak probe laser. The coupling
leads to the great enhancement of probe beam Kerr coeffi-
cient at two off-resonant points, whichmay be of potential
use in frequency measurement. Furthermore, the rela-
tion between the optical Kerr coefficient of the probe
beam and intensity of the pump beam may be utilized
to control the strength of optical nonlinearity of the sys-
tem. We believe that such a phenomenon may lead to a
more profound understanding of nonlinear optical prop-
erties of the hybrid quantum dot-DNA system. We expect
our consequences can be checked experimentally in the
near future.
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