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Abstract

photoluminescence were estimated.

We have investigated the influences of aluminum and gallium dopants (0 to 2.0 mol%) on zinc oxide (ZnO) thin
films regarding crystallization and electrical and optical properties for application in transparent conducting oxide
devices. Al- and Ga-doped ZnO thin films were deposited on glass substrates (corning 1737) by sol-gel
spin-coating process. As a starting material, AlCl5-6H,0, Ga(NOs),, and Zn(CH;CO0),-2H,0 were used. A lowest
sheet resistance of 3.3 x 10° Q/0 was obtained for the GZO thin film doped with 1.5 mol% of Ga after
post-annealing at 650°C for 60 min in air. All the films showed more than 85% transparency in the visible region.
We have studied the structural and microstructural properties as a function of Al and Ga concentrations through
X-ray diffraction and scanning electron microscopy analysis. In addition, the optical bandgap and
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Background
Transparent conducting oxide (TCO) films have been
intensively investigated for optical and electrical applica-
tions, such as flat-panel displays, liquid crystal displays,
organic light-emitting diodes, thin-film transistors, and
thin-film solar cells [1-4]. TCO thin films should have
low resistivity, high transmittance in the visible region
(400 to 800 nm), and high thermal/chemical stability
[5,6]. In most cases, indium tin oxide (ITO) has been
widely employed as a TCO material because of its su-
perb electrical and optical properties. However, ITO has
low stability, high toxicity, and high cost and is a rare
material, motivating efforts to develop alternatives [7].
Recently, zinc oxide (ZnO) has been regarded as a
promising candidate to replace ITO due to its low cost
and excellent properties as compared with ITO. For the
purpose of improving the electrical conductivity and op-
tical transmittance of ZnO thin films, group III elements
such as boron, aluminum, gallium, and indium are usu-
ally introduced to ZnO [8]. Undoped and doped ZnO
thin films have been prepared by a variety of thin film
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deposition techniques, such as chemical vapor depos-
ition, DC and RF magnetron sputtering, electron beam
evaporation, thermal plasma, pulsed laser deposition,
metal organic chemical vapor deposition, spray pyrolysis,
and sol-gel method [9-17].

In this study, Al-doped ZnO (hereafter AZO) and
Ga-doped ZnO (hereafter GZO) thin films were prepared
by sol-gel spin-coating method since this particular tech-
nique offers several advantages, such as large deposition
area, simple equipment, low fabrication cost, and high
homogeneity of the precursor. We compare the effects of
Al and Ga dopants on the microstructure, electrical, and
optical properties of the AZO and GZO thin films as a
function of doping concentration.

Experimental details

Thin films were prepared by sol-gel spin-coating me-
thod. As starting materials, Ga(NOs3),, AlCl3-6H,0, and
Zn(CH3;COO0),-2H,0 were used. As solvent and stabilizer,
2-methoxyethanol and monoethanolamine (MEA) were
used, respectively. Zinc acetate dihydrate was first dissolved
in a mixture of 2-methoxyethanol and MEA solution at
room temperature. The molar ratio of MEA to zinc acetate
dihydrate was maintained at 1.0, and the concentration of
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zinc acetate dihydrate was 0.7 mol/L. In order to study the
influence of Al and Ga dopant concentrations on the prop-
erties of Al-doped and Ga-doped ZnO thin films, the con-
centrations were varied at 0, 0.5, 1.0, 1.5, and 2.0 mol%
with respect to Zn. The solutions were stirred at 60°C for
2 h to yield a clear and homogeneous solution. Thereafter,
Corning 1737 glass (Corning Inc., Corning, NY, USA) was
ultrasonically cleaned in acetone, methanol and DI water
for 5 min, respectively. AZO and GZO films were then
deposited on glass substrates (Corning 1737) by sol-gel
spin-coating method. Spin coating was performed at
room temperature, with a rate of 3,000 rpm for 20 s.
After being deposited by sol-gel spin coating, the films
were preheated at 300°C for 10 min on a hot plate to
evaporate the solvent and remove organic residuals. The
procedures from coating to drying were repeated six
times. The films were then placed in a furnace and post-
heated in air at 650°C for 1.5 h.

The crystalline structures of the specimens were ana-
lyzed by X-ray diffraction (XRD) patterns. XRD 20
scans were carried out by employing a Rigaku X-ray
diffractometer (Rigaku Corporation, Tokyo, Japan) with
a Cu-Ka source (1 =0.154056 nm). The surface micro-
structure was observed by SEM (Hitachi S-4300, Hitachi
High-Tech, Minato-ku, Tokyo, Japan). Electrical resist-
ance was measured using four-point probe method and
Hall measurement system. Optical transmittance mea-
surements were carried out using a UV-vis spectropho-
tometer. Photoluminescence (PL) spectra were recorded
using a PL spectrometer excited with a 325-nm He-Cd
laser at room temperature.

Discussion

The XRD patterns of AZO and GZO thin films at differ-
ent Al and Ga doping concentration annealed at 650°C
in air for 1.5 h are shown Figure 1a,b, respectively. All of
the undoped, Al-, and Ga-doped ZnO thin films were
polycrystalline and have a hexagonal wurtzite crystal
structure [18]. As shown in Figure la, the AZO thin
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films show a preferentially c-axis orientation normal to
the substrate surface after adding the Al dopant, and
the intensity of the (002) plane decreased with increas-
ing Al doping concentration from 0.5 to 2.0 mol%.
This indicates that excessive Al doping deteriorates the
crystallinity of the films, which may be due to the for-
mation of stress by the smaller radius of AI** ions
(0.054 nm) compared with Zn** ions (0.074 nm) [19].
Unlike the Al dopant, the Ga dopant has no significant
influence on the crystal structure of ZnO, as shown in
Figure 1b. A possible reason could be the smaller differ-
ence in radius between Ga®" ions (0.062 nm) and Zn**
ions than between AI** ions and Zn>* ions. Thus, Ga**
ions minimize the influence on ZnO crystallinity when
doped into ZnO films [20,21].

To confirm the relationship between crystallinity and Al
and Ga dopants, we investigated the stress in the direction
of the c-axis. The strain (¢) along the c-axis in the AZO
and GZO thin films can be defined as &= (cfiim — Chun) /
Chullo Where cpi (5.200 A ) is the unstrained lattice param-
eter (American Society for Testing and Materials) and cgyy, 1S
measured by XRD. The lattice constant ¢ can be calculated
by the following formula [22]:

I <4(h2 + K% + hk) N 12> -

3a? c?

(1)

Based on the biaxial strain model, the stress (o) in the
film can be calculated by the following formula, which is
valid for a hexagonal lattice:

2
~ 2¢®13 — ce3(enn + cr2)
2613

Cfilm — Cbulk
X

Cbulk (2)
where a and c are the lattice constants, and dj,; is the
crystalline plane distance for indices %, k, and /. Accord-
ing to Equation 1, the lattice constant c is equal to 2dy
for the (002) diffraction peak. The elastic constants c;; of
single-crystalline ZnO of ¢;; =208.8, ¢1,=119.7, ci3=
104.2, and c33=213.8 have been used [23]. Equation 2
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Figure 1 XRD scans with Cu-Ka radiation for thin films at different Al and Ga dopant concentrations. (a) AZO and (b) GZO thin films.
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Figure 2 Residual stress of AZO and GZO thin films at different
Al and Ga dopant concentrations.
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can be simplified to og, = -233 x ¢ (GPa); the negative
sign indicates compressive stress. Figure 2 shows that
the calculated stress in the direction of the c-axis of
AZO and GZO thin films was fitted by the power law,
and the results showed a tendency of increase in the cal-
culated stress with increasing dopant concentrations. By
adding Al dopant to ZnO, the calculated stress in the
direction of the c-axis was decreased, and an increase of
Al dopant from 0.5 to 2.0 mol% resulted in the calcu-
lated stress increasing again, while there was little
change in GZO. This is an expected result due to the
bigger difference in radius between AI** ions and Zn**
ions than with Ga** ions and Zn>* ions.

As the microstructure of AZO and GZO thin films
have an influence on the electrical and optical prop-
erties for optoelectronic devices, it is very important
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to investigate the surface morphology of AZO and
GZO thin films. Figure 3 shows the surface and cross
section of the AZO (Figure 3a) and GZO (Figure 3b)
thin films at different Al and Ga doping concentra-
tions (0, 0.5, 1.0, 1.5, and 2.0 mol%). The microstruc-
tures of AZO and GZO thin films are homogeneous,
and the thickness of the final film is approximately
150 nm. Also, the density of microstructure was
increased with increasing dopant content. We attri-
bute that by increasing the dopant content, the grain
size of thin films was decreased and then small
grains make no pores. In the case of Al doping, by
increasing the Al doping concentration, the grain size
obtained gradually decreased, which is considered in
light of two possible reasons: (1) the increasing num-
ber of nucleation leading to the formation of small
grains during incorporation of the dopant into the
host material and (2) the disturbance of grain growth
by stress due to the difference in ion radius between
zinc and aluminum [24]. However, when viewing the
case of GZO, the second reason seems more suited
since the grain size of the GZO thin films scarcely
changed with increasing Ga concentration.

Figure 4 shows the sheet resistance, Hall mobility, and
carrier concentration of AZO and GZO thin films at dif-
ferent Al and Ga doping concentrations. The sheet resist-
ance decreased with increasing Al or Ga doping
concentration. The lowest sheet resistances were 4.3 x
10° and 3.3 x 10° /0 for 1.0-mol% Al and 1.5-mol% Ga,
respectively. These decreased sheet resistance values
might have been results of the increase in carrier concen-
tration. The increase in carrier concentration of AZO
and GZO thin films was due to the substitutional incorp-
oration of AI** and Ga>" ions at Zn>* cation sites or the
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Figure 3 SEM micrographs of thin films at different Al and Ga dopant concentrations. (a) AZO and (b) GZO thin films.
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Figure 4 Thin films' sheet resistance, Hall mobility, and carrier concentration at different Al and Ga dopant concentrations. (a) AZO and
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incorporation of Al or Ga ions in interstitial positions.
However, with increase in the Al and Ga doping concen-
trations above 1.0 and 1.5 mol%, the sheet resistance
started to increase. We attribute this increased sheet re-
sistance to the decreased mobility of carriers caused by
high carrier concentration, and thus, the decrease in mo-
bility of carriers may have been due to ionized impurity
scattering [25]. It is also found that the carrier mobility
of AZO thin films was lower than that of GZO thin films
because of the difference in the grain size between the
films, as shown in Figure 3. The decrease in grain size
produces more grain boundary scattering.

Optical transmittance spectra of AZO and GZO thin
films at different Al and Ga doping concentrations are
compared in Figure 5, in the wavelength range of 300 to
800 nm. All films exhibited a transmittance higher than
85% within the visible region, with a sharp fundamental
absorption edge. In particular, the absorption edge is
blueshifted with increasing Al or Ga doping concentra-
tion, which indicates broadening of the optical bandgap.
Typically, the blueshift of the absorption edge of the
AZO and GZO films is associated with an increase of
the carrier concentration blocking the lowest states in

the conduction band, which is well known as the
Burstein-Moss effect [26,27].

From Figure 5, it was also found that absorption edges
shift toward lower wavelength value by increasing Al
or Ga doping concentration. This shift was confirmed
by representing the absorbance squared versus hv in
Figure 6. The absorption coefficient data were used to
determine the optical bandgap, E,, using the following
relation [28]:

ahv~ (hv — Eg) 1/2,

(3)
where hv is the photon energy. The absorption coeffi-
cient @ was obtained from the transmittance data
using the relation a = (1/d)In(1/7), where d and T are the
thickness and the transmittance of the films, respect-
ively. Accordingly, the optical bandgap can be obtained
by extrapolating the corresponding straight lines down-
wards to the photon energy axis in the Tauc plot [29].
The optical bandgap increased in accordance with an
increase in the Al and Ga doping concentrations. The
value of AZO thin films is about from 3.28 to 3.29 eV
and for GZO thin films is from approximately 3.28 to
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Figure 5 Optical transmittance spectra of thin films at different Al and Ga dopant concentrations. (a) AZO and (b) GZO thin films.
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Figure 6 Plot of (ahv)? versus hv for thin films at different Al and Ga dopant concentrations. (a) AZO and (b) GZO thin films.

3.295 eV. According to the Burstein-Moss effect, the
broadening of the optical bandgap is given as follows:

2
AE, = (h> (3%n)*?,

2m¥, )
where AE, is the shift of the doped semiconductor
compared to undoped semiconductor, myg. is the
reduced effective mass, % is Plank's constant, and # is
the carrier concentration. According to this equation,
the optical bandgap would increase with increasing car-
rier concentration.

Figure 7 shows the PL spectra obtained at room
temperature for AZO and GZO thin films with respect
to Al and Ga concentrations, and the results are found to
be dependent on these concentrations. Near-band-edge
(NBE) emissions at about 390 nm and weak deep-level
(DL) emissions are observed in all films. The strong NBE
emissions originated from the free exciton recombination,
and the DL emissions are associated with oxygen defects
[30,31]. The green emission resulted from the recombin-
ation of electrons with holes trapped in singly ionized
oxygen vacancies, which are commonly made in oxygen-
deficient conditions. It is also observed that with the

increase of Al or Ga concentration, the orange emission
peaks disappear. This is because Al or Ga ions exist as
A" and Ga®* and Zn ions as Zn**. When Al or Ga are
doped in ZnO, Al and Ga ions can consume residual O
ions and decrease the concentration of interstitial oxy-
gen in the AZO thin films.

Conclusion

Aluminum- or gallium-doped ZnO thin films were pre-
pared by sol-gel spin-coating method for TCO applica-
tions. All films had a hexagonal wurtzite crystal structure,
and a minimum sheet resistance of 3.3 x 10°Q/0 was
obtained for 1.5-mol% Ga-doped ZnO thin film. We also
found that Al and Ga dopants acted as electrical dopants
at the initial doping concentration but as impurities at
greater doping concentration. The transmittance of the
AZO and GZO thin films was higher than 85% in the vis-
ible region, and the optical bandgap of the AZO and GZO
thin films became broader with increasing Al or Ga dopant
concentration because of the Burstein-Moss effect. In
conclusion, the structural, morphological, electrical, and
optical characteristics of AZO and GZO thin films were
observed, and Ga doping seems to be more effective than
Al doping.
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Figure 7 The PL spectra of thin films at different Al and Ga dopant concentrations. (a) AZO and (b) GZO thin films.
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