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Abstract

Nitrogen-doped thiophene plasma polymer [N-ThioPP] thin films were deposited by radio frequency (13.56 MHz)
plasma-enhanced chemical vapor deposition method. Thiophene was used as organic precursor (carbon source)
with hydrogen gas as the precursor bubbler gas. Additionally, nitrogen gas [N2] was used as nitrogen dopant.
Furthermore, additional argon was used as a carrier gas. The as-grown polymerized thin films were analyzed using
ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, Raman spectroscopy, and water contact angle
measurement. The ellipsometry results showed the refractive index change of the N-ThioPP film. The FT-IR spectra
showed that the N-ThioPP films were completely fragmented and polymerized from thiophene.
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Introduction
The existing semiconductor technology lets a silicone
material make integrations by a top-down form developed
by nano- or molecule technology merged with nanotech-
nology, biotechniques, and information technology and by
a bottom-up method to constitute a device and a circuit
with self-alignment of atoms and molecules. Those are
common opinions of a majority of experts. In spite of the
basic consensus by such experts, the progress in the nano
and molecule device research field is very slow, and it is
much worse now. There are many causes as possible rea-
sons, but it is recognized that the following are still in
question: ‘the choice of the stable molecule and design
technology,’ ‘self-alignment technology of atoms and
molecules,’ and ‘technology to form a molecule and con-
tact between the metal electrode for stability’ [1,2]. The
realization of nanoscale electronics expects the develop-
ment of bottom-up strategies such as chemical synthesis,
self alignment of atoms and molecules, and self-assembled
supramolecule. In fabricating the bio-application material,
the diamond-like carbon [DLC] films have been a good
candidate for some applications such as blood-contacting
devices [3] and cell-contacting materials [4] due to their
excellent mechanical properties [5-7].

In this work, nitrogen-doped plasma polymer was
deposited by nitrogen injection during the plasma-
enhanced chemical vapor deposition [PECVD] process
without ammonia gas. Also, N-ThioPP thin films were
investigated on the surface properties such as surface
energy and structural effects.

Experimental detail
The experiment was carried out in a homemade stainless-
steel PECVD system as shown in Figure 1. Silicon(100)
wafers were wet-cleaned by sonication with acetone, ethyl
alcohol, distilled water, and isopropyl alcohol and dried by
N2 gas blowing. Also, substrates were dry-cleaned by in
situ Ar plasma bombardment with 100 W for 15 min. The
plasma polymer thin films were deposited by PECVD
method. Thiophene was utilized as organic precursor.
Thiophene was preheated up to 60°C and bubbled by 50
sccm of hydrogen gas. Additionally, 50 sccm of argon gas
was used as a carrier gas. The deposition time was 45 min
to make the same thickness at 1 μm. The deposition pres-
sure and temperature were 4.0 × 10-1 Torr and 25°C,
respectively. The typical conditions of the PECVD process
applied in this study for film deposition are 0, 20, 30, 40,
and 50 sccm of N2 gas flow.
The chemical bonding type of plasma polymer thin

films was investigated by FT-IR spectroscopy (Vertex
70, Bruker Optik Gmbh, Ettlingen, Germany). Moreover,
Raman shift of each thin film was investigated by
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FT-Raman spectroscopy (Vertex 70 with RAM-II, Bru-
ker Optik Gmbh, Ettlingen, Germany). Surface wettabil-
ity was measured according to water contact angle
measurements (Attension, KSV Instruments, Ltd., Hel-
sinki, Finland). The ex-situ ellipsometry data of all inves-
tigated films were produced by an ellipsometer (GC5A
automatic ellipsometry, Gaertner Scientific Corporation,
Skokie, IL, USA) at 632 nm to investigate the relation-
ship of film density with the doping amount of nitrogen.
Transmittance and bandgap energy of the N-ThioPP
thin film were investigated by a UV-Vis spectrophot-
ometer (Optizen 2120UV Plus, Mecasys Co., Ltd.,
Yuseong-gu, Daejeon, South Korea).

Results and discussion
The bonding state of the plasma-polymerized thin films
was analyzed by FT-IR absorption over a range of 4,000
to 600 cm-1, as shown in Figure 2. Bands from 700 to
1,050; 1,180; 1,440; 1,601; 1,667; 1,700; 2,025; 2,200;
2,800 to 3,000; 3,200 to 3,600; 3,550; and 3,700 cm-1

corresponded to the alkenes (CHx), C = S, CHx bending
vibrations, C = C; C = O, amide, isonitrile (aromatic),
nitrile (aromatic), CHx stretching vibrations, OH, NHx,
and OH bands, respectively [8]. OH absorption bands
come from the air during ex-situ FT-IR measurement.
NHx and nitrile absorption band were observed with
nitrogen-doped samples. Increasing the N2 flow rate
during the PECVD led to an increase in the nitrogen
doping amounts and nitrogen species binding in the
ThioPP thin film. Also, the shape of the fingerprint
region is different between the ThioPP and N-ThioPP
thin films. Notably, the amide shoulder peak (in the vici-
nity of 1,700 cm-1) is observed only in nitrogen-doped
ThioPP samples. From those results, nitrogen was
bonded with the ThioPP film by nitrogen injection dur-
ing the PECVD process. Additionally, Raman spectra

also show the same evidence as the IR result. The
Raman shift of each sample was shown in Figure 3. The
assignments of the bands are observed in the vicinity of
3,200 cm-1 and 770 cm-1 in the NHx vibrations and CH
out-of-plane bend, respectively [9-11]. NHx peaks were
increased with increasing N2 flow rate. Also, there are
no peaks in the vicinity of 1,300 cm-1 and 1,600 cm-1. It
means that the N-ThioPP thin film is not a DLC film in
this experimental condition [12].
The change of water contact angles with increasing N2

flow rate was shown in Figure 4. The water contact
angles were decreased by increasing the N2 flow rate.
Surface energy of the ThioPP thin film was changed
into a more hydrophilic surface by the high flow rate of

Figure 1 A schematic diagram of the home-made PECVD
system.

Figure 2 FT-IR spectra of ThioPP and N-ThioPP with N2 flow
rate.

Figure 3 Raman spectra of ThioPP and N-ThioPP with N2 flow
rate.
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nitrogen. When 50 sccm of N2 gas was inserted during
the PECVD process, the water contact angle was 74°
which was the lowest value. From the FT-IR spectro-
scopy, FT-Raman spectroscopy, and contact angle mea-
surements, the chemistry and surface energy of the
ThioPP thin film were changed by nitrogen amounts.
Figure 5 shows the refractive indices of the plasma

polymer thin film with RF power. Refractive index was
decreased by increasing the N2 flow rate. It means that
the density of the plasma polymer thin film was
decreased by increasing the N2 flow rate due to the dis-
turbance that led to form a high density cross-link
between the thiophene molecules in the plasma poly-
mer. Thus, the refractive index of N-ThioPP thin film
was decreased by increasing the N2 flow rate [13,14].

We measured that the average transmittance in the
infrared range was over 80% for all ThioPP films (in Fig-
ure 6a). The optical band gap, Eg, of the thin film could
be obtained by plotting a2 vs. hν (a is the absorption
coefficient and hν is the photon energy) and extrapolat-
ing the straight-line portion of this plot to the photon
energy axis (Figure 6b) [15-18]. As nitrogen contents
increased, the absorption edge shifted to a longer wave-
length region (Figure 6a). Figure 6b showed the variation
of optical band gap as a function of dopant contents,
respectively. Optical band gaps were widened with
increasing nitrogen flow rate (in Figure 6b). The reasons
were that the densities of electrons were decreased while
nitrogen ions were substituted into carbon sites in the
films.

Conclusions
N-ThioPP thin films were deposited on Si(100) by the
PECVD method. IR spectra (nitrile band, 2,025 and

Figure 4 Water contact angle of ThioPP and N-ThioPP with N2

flow rate.

Figure 5 Refractive indices of ThioPP and N-ThioPP with N2

flow rate.

Figure 6 UV-Vis spectra (a) and bandgap energy (b) of ThioPP
and N-ThioPP with N2 flow rate.
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2,200 cm-1; and the difference of the fingerprint region
between ThioPP and N-ThioPP) show that the N-
ThioPP thin film was fabricated by nitrogen gas injec-
tion during the PECVD process. Moreover, the increas-
ing NHx species was definitely shown in the Raman
spectra. NHx species was increased by increasing the N2

flow rate. Also, decreasing the contact angle shows the
increasing surface energy of the N-ThioPP thin film
with increasing N2 flow rate. Additionally, decreasing
the contact angle indicates the indirect cause of the
increasing nitrogen amounts in the N-ThioPP thin film.
Nitrogen atoms bonded with thiophene molecules dur-
ing the PECVD process. Also, nitrogen disturbs the
strong bond between thiophene molecules. Thus, the
refractive index of the N-ThioPP thin film was
decreased by increasing the nitrogen amount. It indi-
cates that the hardness of the N-ThioPP thin film was
controlled by nitrogen amounts in the thin film. UV-Vis
spectra of all samples show 80% of transmittance in the
infrared region. However, transmittance in the visible
region was dramatically changed by increasing the nitro-
gen amounts. Thus, the energy bandgap of N-ThioPP
was increased by increasing the nitrogen amounts.
From those results, nitrogen-doped plasma polymer

thin films could be fabricated easily by nitrogen injec-
tion during the PECVD process without ammonia as
toxic gas. Also, we can control the optical, physical, and
chemical properties of the N-ThioPP thin film by con-
trolling of nitrogen flow rate.
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