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Abstract

In this work, we present a theoretical photoluminescence (PL) for p-doped GaAs/InGaAsN nanostructures arrays. We
apply a self-consistent

→
k_
→p method in the framework of the effective mass theory. Solving a full 8 × 8 Kane's

Hamiltonian, generalized to treat different materials in conjunction with the Poisson equation, we calculate the
optical properties of these systems. The trends in the calculated PL spectra, due to many-body effects within the
quasi-two-dimensional hole gas, are analyzed as a function of the acceptor doping concentration and the well
width. Effects of temperature in the PL spectra are also investigated. This is the first attempt to show theoretical
luminescence spectra for GaAs/InGaAsN nanostructures and can be used as a guide for the design of
nanostructured devices such as optoelectronic devices, solar cells, and others.
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Background
In the last decade, the study of quaternary InGaAsN
alloy systems has attracted a great deal of attention due
to its potential application in nanostructured devices
such as next-generation multijunction solar cells and
optoelectronic devices for optical communications [1-5].
Incorporation of a small amount of nitrogen (<2%) to
InGaAs reduces the net strain because of the smaller
atomic size of nitrogen (0.75 Å) compared with arsenic
(1.33 Å), decreasing the bandgap due to a large bandgap
bowing [6]. Therefore, by carefully controlling the com-
position ratios, one should be able to achieve InGaAsN
epitaxial layers lattice-matched to GaAs substrates [7].
The use of these alloys in the manufacture of laser
regions for optical communication emitting at the range
of 1.3 to 1.5 μm shows several advantages, e.g., it has
been demonstrated to be a low-cost replacement for dir-
ectly modulated 1.3-μm InP devices used in network
applications as wireless access points and Ethernet
switches [8,9]. In addition, the diluted quaternary nitride
alloys are of great interest for high-conversion efficiency
solar cells and heterojunction bipolar transistors (HBT)
with low turn-on voltage for portable devices [2-5]. For
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space photovoltaic applications, high-efficiency solar cell
are advantageous for increasing the available electrical
power or alternately reducing satellite mass and launch
cost [2].
In order to improve the development of new dilute

nitride-based devices, it is important to investigate
the photoluminescence (PL) properties of semicon-
ductor nanostructures [10]. Although an investigation
on the PL properties of p-type-doped InGaAsN sys-
tems is of particular interest due to its potential
usage in n-p-n HBT devices as the base layer [11-15],
few reports are found on the literature. Generally,
beryllium has been used as the p-type dopant in the
InGaAsN layers [10,11]. From an experimental point
of view, rapid thermal annealing (RTA) has been
demonstrated to improve the PL intensity and the in-
ternal quantum efficiency of solar cells [6]. The real
importance of this technique is that RTA can effect-
ively reduce the composition fluctuation and suppress
the InGaAs-rich phase [16]. This fact was also
observed in GaAsN alloys, confirming the formation
of localized states inside the wells [17].
In this work, we investigate the theoretical PL spec-

tra calculations for p-doped GaAs/InGaAsN nanos-
tructures. The calculations are performed within the
→
k_
→p method by solving the full 8 × 8 Kane's

Hamiltonian, generalized to treat different materials.
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Strain effects due to the lattice mismatch between
InGaAsN and GaAs are also taken into account. By
varying the acceptor concentration and well width, we
analyze the effect of exchange-correlation, which plays
an important role in the potential profile and elec-
tronic transitions. We also investigate the effects of
temperature in the PL spectra. These results can explain
several important aspects on the optical properties of
these nanostructured systems.

Methods
The calculations are carried out by solving the 8 × 8
Kane's multiband effective mass equation (EME) which
is represented with respect to a basis set of plane waves.
We assume an infinite superlattice (SL) of squared well
along the <001 > direction. The multiband EME is repre-
sented with respect to the plane waves with the wave
vectors, K = (2π/d)l (l is an integer), equal to the recipro-
cal SL vectors. Rows and columns of the 8 × 8 Kane's
Hamiltonian refer to the Bloch-type eigenfunctions��jmj

→
k 〉 of the Γ8 heavy and light hole bands, Γ7 spin-

orbit hole bands, and Γ6 electron bands;
→
k denotes a

vector of the first Brillouin zone.
Expanding the EME with respect to the plane waves

〈z|K〉 means representing this equation in terms of the

Bloch function 〈
→
rjjmj

→
k þ K

→
ez〉 . For a Bloch function

〈z
��E→k〉 of the SL corresponding to energy E and the

wave vector
→
k , the EME takes the following form

[18,19]:
X
j0m0

jK 0
hjmj

→
kK jT þ Ts þ VA þ VH þ VHET

þVXC jj0m0
j
→
kK 〉〈j0m0

j
→
kK jv→k〉

¼ E
→
k

� �
〈jmj

→
kK jv→k〉;

ð1Þ
where T is the unperturbed kinetic energy term general-
ized for a heterostructure, TS is the strain energy term
that originated from the lattice mismatch, VHET is the
square potential due to the difference between energy
gaps,VXC is the exchange-correlation potential,VH is the
Hartree potential, and VA is the ionized acceptor poten-
tial [18-20]. The Luttinger parameters as well as the
other terms appearing in the secular equation are to be
taken for each epitaxial layer of the SL and were
extracted from [18-21]:

hjmjK jVH þ VAjj0m0
jK

0i ¼ �4πe2

εjK � K 0j2 hK jp zð Þ
� NAjK 0iδjj0δmjm0

j ; ð2Þ
with NA being the acceptor doping concentration and p
(z) the hole charge distribution which is given by the
following:

p zð Þ ¼
X

jmjk∈empty

jhzsjjmj
→
kij2: ð3Þ

The exchange-correlation potential contribution
within LDA is taken into account as in our previous
works; therefore, details can be found elsewhere [22,23].
From the calculated eigenstates, one can determine

the luminescence spectra of the systems by applying the
following general expression [24]:

I ωð Þ ¼ 2ℏω3

c
e2

m0c2
X
k

X
ne

X

nq
q ¼ hh; lh; so

fnenq kð ÞNnek 1� Nnqk
� �

� 1
π

γnek nqk

Ene kð Þ � Enq kð Þ � ℏω
� �2 þ γ2nek nqk

;

ð4Þ
where e is the electron charge, m0 is its mass, ω is the
incident radiation frequency, γ is the emission broaden-
ing, ne and nq are the electron and hole states associated
to the transition, and Ene and Enq are the energies asso-

ciated to them. Nnek and 1� Nnqk
� �

are the Fermi-like
occupation functions for the states in conduction and
valence bands, respectively. The oscillator strength,
fnenq kð Þ, is given by the following:

fnenq kð Þ ¼ 2
m0

X
σeσq

jhneσek
��px

��nqσqkij2
Ene kð Þ � Enq kð Þ ; ð5Þ

where px is the dipole momentum in the direction x; σe and
σq denote the spin values for electrons and holes,
respectively. We consider the gap energy for InGaAsN
alloys as described in [12]. We also used an approach for
different temperatures, considering the Varshni correction
as given in [25]. However, it is important to note that for
the reported high concentrations of In (0.25 to 0.41) and N
(0 to 0.052) at low temperatures (T < 60 K), the PL spectra
shows an energy blueshift, mainly due to the recombination
of excitons localized most likely in the In-N clusters [26].

Results and discussion
Figure 1 shows the PL spectra at T = 2 K for p-type GaAs/
InxGa1−xAs1−yNy SL with x = 3%, y = 1.3%, barrier width,
d1 = 3 nm, and well width, d2 = 3 nm. From the literature
[10,11,13], one can estimate the order of magnitude of
hole concentrations, NA. Four different hole concentra-
tions, NA, of this same order of were used, and they are
1 × 1018, 2 × 1018, 4 × 1018, and 6 × 1018 cm−3. The systems
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Figure 2 Different contributions to the self-consistent heavy-hole pot
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Figure 1 Theoretical PL spectra, at 2 K, for unstrained p-doped
GaAs/InxGa1−xAs1−yNy SL. With x = 3%, y = 1.3%, barrier width,
d1 = 3 nm, and well width, d2 = 3 nm. The acceptor concentration is
varied for NA = 1 × 1018 cm−3 (solid line), 2 × 1018 cm−3 (dashed line),
4 × 1018 cm−3 (dotted line), and 6 × 1018 cm−3 (dot-dashed line).
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present strain in the barrier as well as in the well though
they are compensating each other. The peak in the spectra
is assigned to the first electronic transition, from electron
(E1)- to the heavy hole (HH1)-confined state. The nota-
tion indicates the first level occupied for each carrier. We
observe a redshift in energy as the concentration
increases, and after the value of NA = 4 × 1018 cm−3, we
see a blueshift. This behavior is due to the different contri-
butions for the Coulomb (VC) and exchange-correlation
potentials (VXC) to the total potential, explained as follows.
The competition between these potentials can generate a
repulsive or attractive bending in the total potential since
their sum will determine the shape of this bending inside
the well. Thus, the energy levels lie near or far from the
top of the valence band, decreasing or increasing the elec-
tronic transition. For a better comprehension, we present
in Figure 2 the self-consistent heavy-hole (ground state)
potential profiles inside the well for the same systems
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described above. Clearly, it is possible to see that for
NA = 1 × 1018 cm−3 and for NA = 2 × 1018 cm−3, VXC

plays a major role in comparison with VC, so the total
potential has an attractive profile. This is a consequence
of the charge-density localization, which is mostly concen-
trated at the well center. Therefore, since the exchange-
correlation potential depends on the local charge density,
it is expected that this one dominates over the Coulomb
potential. For NA = 4 × 1018 cm−3, both potentials are prac-
tically the same, and the bending is almost flat. Above this
concentration, the bending acquires a repulsive behavior.
In this case, the Coulomb potential is more significant
than the exchange-correlation potential.
In Figure 3, we analyze the PL spectra at T = 2 K by

changing the well width, d2 = 2, 3, 4, and 6 nm, for a
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Figure 3 Theoretical PL spectra at T =2 K for the same system
described in Figure 1. With fixed d1 = 3 nm for (a) NA = 2 ×
1018 cm−3 and (b) NA = 6 × 1018 cm−3. The well width is varied for
d2 = 2 nm (solid line), 3 nm (dashed line), 4 nm (dotted line), and
6 nm (dot-dashed line).
fixed barrier d1 = 3 nm for the same structures described
above with NA = 2 × 1018 cm−3 and NA = 6 × 1018 cm−3.
In both cases, we observe a redshift in energy as the well
width increases. The character of the bending, repulsive
or attractive, in the total potential profile remains un-
changed in both cases; the levels are just closer to the
top of the valence band as the well width increases,
decreasing the optical transition.
The effects of temperature are analyzed in Figure 4, in

which we show the calculated PL spectra as a function
of temperature for the same system of Figure 3 with d1
= 3 nm and d2 = 2 nm and for NA = 6 × 1018 cm−3. There
is a redshift in the position of the lowest peak of the
spectra as the temperature increases. The first peak, as
cited previously, corresponds to the first electronic tran-
sition, from electron (E1) to the heavy hole (HH1). The
second peak is associated with the second transition, E1-
LH1, with LH1 being the first light hole level. Actually,
the first and second peaks are almost indistinguishable
because the energy levels are very close. This fact
occurs from T = 2 K up to T = 200 K. After that and
for T = 300 K, we have the two lowest peaks, E1-HH1
and E1-LH1. Here, they are separated by a more sig-
nificant amount of energy, followed by three more
peaks, which correspond to E1-HH2, E1-HH3, and
E1-SO1 (first split-off hole level), respectively. The
latter shows a stronger peak due to a larger oscillator
strength, which is larger than the superposition of the
wave functions of the second, third, and fourth states
1200 1250 1300 1350 1400 1450

 2 K
 40 K
 80 K
 100 K
 200 K
 300 K

Energy (meV)

N
or

m
al

iz
ed

 P
L 

(a
.u

.)

Figure 4 Temperature dependence of the normalized
calculated PL spectra as obtained in Figure 1. With d1 = 3 nm,
d2 = 2 nm, and NA = 6 × 1018 cm−3. From T = 2 K to T = 200 K, we
have two peaks with close energies, which correspond to E1-HH1
and E1-LH1 electronic transitions. After that, for T = 300 K, there
appear three more peaks, in addition to the first two lowest peaks,
which are ascribed to the recombination involving the other excited
hole states.
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in the valence and conduction bands. As the temperature
increases to 300 K, the main peak spans from transitions
to the fundamental state to transitions to the first excited
state and so on, giving rise to the multiple peaks seen. The
redshift observed in the spectra is related to the
InGaAsN gap shrinkage, according to the Varshni
approximation [25].

Conclusions
We present here for the first time the theoretical PL
spectra for GaAs/InGaAsN systems obtained using self-
consistent effective mass theory calculations. We noted
a remarkable change in the total potential when the ac-
ceptor concentration increases. For the cases discussed
here, changes in the well width do not change the shape
of bending for the total potential. Furthermore, and as
expected, we see a redshift in the PL spectra as the
temperature increases. The present results show that in
modulation p-doped GaAs/InGaAsN nanostructures, the
many-body effects, such as exchange and correlation,
must be taken into account for a realistic description of
hole bands and potentials in these systems. These find-
ings will certain have important implications for optical
measurements, such as luminescence or absorption, to-
wards developing new technologies based on nanostruc-
tured superlattices. This will be important in the
development of new optoelectronic devices, solar cells,
and other devices.
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