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Abstract

Within the envelope function approach and the effective-mass approximation, we have investigated theoretically the
effect of an intense, high-frequency laser field on the bound states in a GaxIn1 − xNyAs1 − y/GaAs double quantum well
for different nitrogen and indium mole concentrations. The laser-dressed potential, bound states, and squared wave
functions related to these bound states in Ga1 − xInxNyAs1 − y/GaAs double quantum well are investigated as a function
of the position and laser-dressing parameter. Our numerical results show that both intense laser field and nitrogen
(indium) incorporation into the GaInNAs have strong influences on carrier localization.
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Review
Background
Recently, the evolution of the growth techniques such as
molecular beam epitaxy and metal-organic chemical vapor
deposition combined with the use of the modulation-
doped technique made it possible the fabrication of low-
dimensional heterostructures such as single and multiple
quantum wells, quantum wires, and quantum dots. In
these systems, the restriction on the motion of the charge
carriers allows us to control the physical properties of the
structures. The studies on these systems offer a wide range
of potential applications in the development of semicon-
ductor optoelectronic devices [1-5].
GaInNAs/GaAs quantum well (QW) lasers have been

attracting significant scientific interest mainly due to their
applications in 1.3- or 1.55-μm optical fiber communica-
tion [6-12]. These lasers are predominantly based on GaI-
nAsP alloys on the InP substrates, which have a higher
temperature sensitivity compared to shorter wavelength
lasers that are grown on GaAs substrates. The high-
temperature sensitivity is primarily due to Auger recom-
bination and the weak electron confinement resulting
from the small conduction band offset in the GaInAsP/
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InP material system. GaInNAs alloys grown on GaAs sub-
strates have been proposed as a possible alternative to the
GaInAsP/InP system for achieving lasers with high-
temperature performance [13]. The deeper conduction
band well and the larger electron effective mass will pro-
vide better confinement for electrons and better match of
the valence and conduction band densities of state, which
leads to a higher characteristic temperature and higher
operating temperature, higher efficiency, and higher out-
put power [6-13].
As known, high-frequency intense laser field (ILF) con-

siderably affects the optical and electronic properties of
semiconductors [14-20]. Because when an electronic sys-
tem is irradiated by ILF, the potential of the system is
modified which affects significantly the bound state energy
levels, a feature that has been observed in transition en-
ergy experiments. The design of new efficient optoelectro-
nic devices depends on the understanding on the basic
physics involved in this interaction process. Thus, the
effects of a high-frequency ILF on the confining potential
and the corresponding bound state energy levels are a very
important problem. This problem has been a subject of
great interest, and an enormous amount of literature has
been devoted to this field [21-27]. However, up to now, to
the best of our knowledge, no theoretical studies have
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been focused on the bound states in Ga1 − xInxNyAs1 − y/
GaAs double quantum well (DQW) under the ILF.
The purpose of this work is to investigate the effect of

ILF, nitrogen (N), and indium (In) mole fractions on the
bound states in Ga1 − xInxNyAs1 − y/GaAsDQW. The paper
is organized as follows: in the ‘Theoretical overview’ section,
the essential theoretical background is described. The next
section is the ‘Results and discussion’ section, and finally,
our calculations are given in the ‘Conclusions’ section.

Theoretical overview
The method of approach used in the present study is
based on non-perturbation theory developed to describe
the atomic behavior under intense, high-frequency laser
field conditions [28,29]. It starts from the space-translated
version of the semi-classical Schrödinger equation for a
particle moving under the combined forces of potential
and a radiation field derived by Kramers in the general
context of quantum electrodynamics [30]. For simplicity,
we assume that the radiation field can be represented by a
monochromatic plane wave of frequency ω. For linear
polarization, the vector potential of the field in the labora-
tory frame is given by A tÞ ¼ A0 cos ωtð Þê�

, where ê is
the unit vector. By applying the time-dependent transla-
tion r ¼ r þ α tð Þ , the semi-classical Schrödinger equa-
tion in the momentum gauge, describing the interaction
dynamics in the laboratory frame of reference, was trans-
formed by Kramers as follows [30]:

� ℏ2

2m� ∇
2ϕ r; tð Þ þ V rþ α tð Þð Þϕ r; tð Þ ¼ iℏ

∂ϕ r; tð Þ
∂t

;

ð1Þ
where V(r) is the atomic binding potential, and

αðtÞ ¼α0 sin ωtð Þê; α0 ¼ eA0

m�cω
ð2Þ

represents the quiver motion of a classical electron in the
laser field, and V(r + α(t)) is the ‘dressed’ potential energy.
In this approximation, the influence of the high-frequency
laser field is entirely determined by the ‘dressed potential’
V(r + α(t)) [30],

α0 ¼ I1=2

ω2

� �
e=m�ð Þ 8π=cð Þ1=2; ð3Þ

where e and m* are absolute value of the electric charge
and effective mass of an electron; c, the velocity of the
light; A0, the amplitude of the vector potential; and I, the
intensity of ILF.
Following the Floquet approach [29,30], the space-

translated version of the Schrödinger equation, Equation
1, can be cast in equivalent form of a system of coupled
time independent differential equations for the Floquet
components of the wave function ϕ, containing the (in
general complex) quasi-energy E. An iteration scheme
was developed to solve this; for the zeroth Floquet com-
ponent α0, the system reduces to the following time-
independent Schrödinger equation [29-32]:

� ℏ2

2m� ∇
2 þ V r; α0ð Þ

" #
ϕ0 ¼ Eϕ0; ð4Þ

where V(r, α0) is the dressed confinement potential
which depends on ω and I only through α0 [28].
By applying the above-described dressed potential theory

to our particular Ga1 - xInxNyAs1 - y/GaAs DQW system, we
write down the time-independent Schrödinger equation in
one-dimensional case for an electron inside a Ga1 - xInx-
NyAs1 - y/GaAs DQW (we choose the z-axis along the
growth direction) in the presence of an intense high-
frequency laser field (the laser-field polarization is along the
growth direction), which is given by the following:

� ℏ2

2m�
∂2ψ zð Þ
∂z2

þ V α0; zð Þψ zð Þ ¼ Eψ zð Þ; ð5Þ

where ψ(z) is the wave function, and V(α0, z) is the dressed
confinement potential which is given by the following ex-
pression:
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þ V0

π
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Figure 1 The variation of the laser-dressed potential, bound
states, and squared wave functions. Related to these bound
states in Ga1 − xInxNyAs1 − y/GaAs DQW which has the width
Lw1 = Lw2 = 100 Å, Lb = 50 Å as a function of the position. In and N
concentrations are x = 0.15, y = 0.005, respectively. The results are as
follows: (a) α0 = 0 Å, (b) α0 = 50 Å, and (c) α0 = 100 Å.

Ungan et al. Nanoscale Research Letters 2012, 7:606 Page 3 of 6
http://www.nanoscalereslett.com/content/7/1/606
where V0 is the conduction band offset at the interface;
L = Lw1 + Lw2 + Lb, Lw1 = Lw2, the well width; Lb, the bar-
rier width; Θ, the Heaviside unit step function which sat-
isfies Θ(z) = 1 − θ(−z); and θ, the unit step function [33].
To solve the Schrödinger equation in Equation 5, we

take as base the eigenfunction of the infinite potential well
with Ls width. Ls is the well width of the infinite well at
the far end of DQW with L width (Ls > > L), and its value
is determined according to the convergence of the energy
eigenvalues. These bases are formed as [34] follows:

ψn zð Þ ¼
ffiffiffiffiffi
2
Ls

r
cos

nπ
Ls

z � δn

� �
; ð7Þ

where

δn ¼
0 if n is odd;
π

2
if n is even;

(

and so, the wave function in the z-direction is expanded
in a set of basis function as follows:

ψ zð Þ ¼
X1
n¼1

cnψn zð Þ: ð8Þ

In calculating the wave function ψ(z), we ensured that
the eigenvalues are independent of the chosen infinite po-
tential well width Ls and that the wave functions are loca-
lized in the well region of interest. This method, which
gives accuracies greater than 0.001 meV, is well controlled,
gives the DQW eigenfunctions, and is easily applied to
situations of varying potential and effective mass.

Results and discussion
In this work, we have theoretically investigated the effects
of ILF, In, and N concentrations on the bound states in
Ga1 - xInxNyAs1 - y/GaAs DQW. The energy levels and cor-
responding wave functions of an electron confined in the
Ga1 - xInxNyAs1 - y/GaAs DQW under the ILF are calculated
within the framework of the effective mass and envelope-
wave function approximation. The band structure para-
meters used in this study are from [35,36]. The bandgap en-
ergy and electron effective mass of Ga1 - xInxNyAs1 - y/GaAs
is calculated using the band-anti-crossing model (BAC).
The electron effective mass of Ga1 - xInxNyAs1 - y/GaAs as
predicted by BAC model is given by [37,38]:

m� Ga1�xInxNyAs1�y
� � ¼ 2m� InxGa1�xAsð Þ=

� 1� EC � ENffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EC � ENð Þ2 þ 4V 2

NCy
q

0
B@

1
CA:

ð9Þ
The E− in the BAC model is taken to be the funda-

mental bandgap energy (EG) for Ga1 - xInxNyAs1 - y,
E� ¼ 1
2

EN þ ECð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EN � ECð Þ2 þ 4V 2

NCy
q� �

;

ð10Þ
EC ¼ EC0 � 1:55y ð11Þ

EN ¼ 1:65 1� xð Þ þ 1:44x� 0:38x 1� xð Þ ð12Þ
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VNC ¼ 2:7 1� xð Þ þ 2x� 3:5x 1� xð Þ; ð13Þ

where x and y are the In and N compositions in
Ga1 − xInxNyAs1 − y, respectively; EC0, the energy in
the absence of N; and EC, EN, and VNC, the bandgap ener-
gies of InGaAs at Γ point, the energy of the isolated N level
Figure 2 The variation of energy levels. For bound states in
Ga1 − xInxNyAs1 − y/GaAsDQW which has the width Lw1 = Lw2 = 100 Å,
Lb = 50 Å as a function of the laser-dressing parameter. The results are
as follows: (a) x = 0.15, y = 0.005; (b) x = 0.30, y = 0.005; and (c) x = 0.15,
y = 0.01.

Figure 3 Change of ground state energy levels. As a function of
N (a) and In (b) concentrations in Ga1 − xInxNyAs1 − y/GaAsDQW for
different laser-dressing parameters.
in the InGaAs host material, and the coefficient describing
the coupling strength between EN and the InGaAs conduc-
tion band, respectively.
In Figure 1a,b,c, we show the laser-dressed potential,

bound states, and squared wave functions related to
these bound states in Ga1 − xInxNyAs1 − y/GaAs DQW
which has the width Lw1 = Lw2 = 100 Å, Lb = 50 Å for a
constant In and N concentrations x = 0.15, y = 0.005, and
different laser-dressing parameters (α0) as a function of
the position. As seen in this figure, there are four bound
states in DQW for α0 = 0 Å, while there are five and six
bound states for α0 = 50 Å and α0 = 100 Å, respectively.
Because as ILF increases, the width of the well bottom
decreases by Lw − 2α0, while the top width increases by
Lw + 2α0. In the meantime, the opposite behavior takes
place in the barrier region. Energy levels are closer to
each other since ILF creates an additional geometric
confinement on the electronic states in the DQW. Fur-
thermore, for α0 values which satisfy the condition α0 ≥
Lw/2, the role exchange between the well and the barrier
emerges: the barrier region turns into well, and the well
region turns into barrier. Thus, DQW potential turns
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into triple quantum well as α0 increases. The emergence
of role exchange between the well and the barrier opens
the possibility of creating controllable resonant states
located in the material. This obviously does not need
any growth of conventional triple QWs, which are more
difficult to tune to the desired resonance states.
In order to see the effect of the ILF on the electronic

states, the variations of energy levels for bound states in
Ga1 − xInxNyAs1 − y/GaAs DQW as a function of the laser-
dressing parameter for a constant N (In) concentration
and two different In (N) concentrations are given in
Figure 2a,b,c, respectively. As seen in this figure, as α0
increases, the lowest energy levels increase while the bound
state energies which are newly appeared with the effect of
ILF decrease, and this can be appreciated as an important
factor in forming the population inversion in optical
pumping laser systems. Change of energy spectrum with
laser field provides a new freedom degree in optical sys-
tems based on interband and intersub-band transitions
and also important advantage in the field of application.
In Figure 3a,b, we display the change of ground state en-

ergy levels in Ga1 − xInxNyAs1 − y/GaAs DQW for differ-
ent laser-dressing parameters as a function of the N and
In concentrations, respectively. As can be seen in this
figure, as the N (In) concentration increases, the ground
state energy levels increase. The main reason for this be-
havior is that for a constant In concentration, as N con-
centration increases, both the electron effective mass and
the conduction band offset increase. Furthermore, the
conduction band offset increases while the electron effect-
ive mass decreases with increasing In concentration for a
constant N concentration. Additionally, the ground state
energy level increases up to the certain laser value (α0 = 50
and 125 Å). On the contrary, it decreases when the laser
field is further increased (see Figure 2).
Conclusions
In this work, we have investigated mainly the effects of
the ILF, N, and In concentrations on the bound states in
Ga1 − xInxNyAs1 − y/GaAs DQW. The calculations were
performed within the effective-mass and envelope-wave
function approximations. The frequency and corre-
sponding laser intensity for α0 = 150 Å are 30 THz and
1.8 × 1010 W/cm2, respectively. The corresponding ap-
plied field intensity is the order of the crystal damage
threshold intensity that can be avoided by using high-
power pulsed CO2 lasers, etc. Fortunately, the current
generation of free electron lasers can provide intense
laser fields in the frequency range of 0.2 to 3,226 THz,
with field strengths up to approximately 100 kV/cm.
Therefore, our results can be tested by using the applied
field intensity lower than the breakdown limit of the cor-
responding semiconductors.
Our numerical results reveal that ILF creates an add-
itional geometric confinement on the electronic states in
the DQW; the effect of the N (In) concentration on the
electronic states increases with the effect of ILF. We can
tune the electronic structure and main optical properties
of the system which depend on intersub-band transitions
by changing the N (In) concentration together with the
laser field. We hope that our calculation results can
stimulate further investigations of the related physics as
well as device applications of dilute nitrides.
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