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Abstract

We have studied the polarized resolved photoluminescence of n-type GaAs/AlAs/GaAlAs resonant tunneling diodes
under magnetic field parallel to the tunnel current. Under resonant tunneling conditions, we have observed two
emission lines attributed to neutral (X) and negatively charged excitons (X−). We have observed a
voltage-controlled circular polarization degree from the quantum well emission for both lines, with values up to
−88% at 15 T at low voltages which are ascribed to an efficient spin injection from the 2D gases formed at the
accumulation layers.
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Background
In the last years, it has been an increasing interest in the
manipulation of spin degrees of freedom in semicon-
ductor devices. Particularly, some attention was focused
on non-magnetic resonant tunneling diodes (RTDs) be-
cause the spin polarization of carriers in the structure
can be voltage-controlled which is very useful for device
applications [1-11]. However, the voltage dependence of
the polarization degree is not well understood and it
seems to depend on various contributions such as filling
factors, spin injection from the two dimensional (2D)
gases formed in the accumulation layers next to the bar-
riers, and charge accumulation in the quantum well
(QW). In this paper, we have studied spin effects in a
non-magnetic n-type GaAs/AlGaAs resonant tunneling
diode (RTD). The spin polarization of carriers was stud-
ied by analyzing the current-voltage characteristics curve
(I-V) and the right (σ+) and left (σ−) circularly polarized
photoluminescence (PL) from the contact layers and the
QW as function of applied voltage under magnetic fields
up to 15 T. We have investigated the polarization degree
of both the QW and 2D gases emissions. Under applied
voltage and light excitation, electrons and photo-
generated holes tunnel through the double-barrier
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structure creating a 2D electron and a hole gas at the ac-
cumulation layers next to the barriers. These 2D gases
can inject spin-polarized carriers into the QW under
applied voltage resulting in high polarization degree
values. This injection seems to be very efficient at low
voltages. However, under higher voltages, other effects
probably contribute to the spin polarization of carriers
in the QW, including charged exciton or trion formation.
In previous works, structures with smaller QW widths
were used, therefore emission from trions were not
resolved in the PL spectra [4-8]. In this work, we have
studied a device with a larger QW width which has
revealed the formation of trions in the QW. Our results
show that the QW circular polarization degree for charged
and neutral excitons is voltage dependent with relatively
higher values, up to −88% at 15 T for low bias voltages.
This result cannot be attributed solely to a simple thermal
occupation effect and is mainly attributed to the injection
of polarized carriers from the contacts. Under higher vol-
tages, the QW circular polarization is reduced, indicating
additional contribution for the spin polarization in the
QW such as the increasing of the density of carriers and
the formation of trions in the QW.
Methods
PL measurements were performed by using a Si charge-
coupled device to an Andor Shamrock SR-500i spec-
trometer (Andor Technology, Belfast, UK). The right σ+
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Figure 1 Schematic band diagram of the n-type RTD and
typical PL emission from the QW. (a) Schematic band diagram of
the n-type RTD under forward bias, light excitation, and magnetic
field parallel to the tunnel current. (b) Typical PL emission from the
QW for different voltages and 15T.
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and left σ−circularly polarized PL were selected by using
a quarter wave retarder and a polarizer. A linearly polar-
ized 532-nm continuous wave laser was used for optical
excitation. As a consequence, the photo-generated car-
riers do not present a defined spin polarization. Optical
and transport measurements were performed at the
temperature of 4 K under magnetic fields parallel to the
tunnel current. Our n-type RTD structure was grown by
molecular beam epitaxy on an n + (001) GaAs substrate.
It consists of 0.6 μm n-GaAs (1018 cm−3), 806 Å n-GaAs
(1017 cm−3), 509 Å n-GaAs (1016 cm−3), 209 Å undoped
GaAs spacer, 57 Å Al 0.4 Ga0.6 As barrier, 90 Å GaAs
QW, 57 Å Al 0.4 Ga 0.6 As barrier, 209 Å GaAs spacer,
509 Å n-GaAs (1016 cm−3), 806 Å n-GaAs (1017 cm−3),
and 2.0 μm n-GaAs (1018 cm−3). The devices were pro-
cessed in circular mesas of about 200 μm diameter with
annular AuGe contacts allowing optical measurements.

Results and discussion
A schematic band diagram of our device under forward
bias voltage, magnetic field, and light excitation is shown
in Figure 1a. Under this condition, carriers can tunnel
and recombine at different layers of the structure. The
confined levels in the QW and the contact layers split
into spin-up and spin-down Zeeman states, and the op-
tical recombination can occur with the defined selection
rules giving information about the spin polarization of
the carriers in the structure. The PL spectra include the
emission from the QW and the contact layers, and both
are voltage dependent. It is well known that the relative
concentrations of electrons and holes in the QW of
RTD structures can be controlled by external parameters
[12-17]. By varying the applied bias and the laser inten-
sity, it is possible to change significantly the concentra-
tion of electrons and photo-generated holes tunneling
through the barriers of our structure. As a consequence,
the QW PL emission can comprise neutral, positively
charged (X+), and negatively charged (X−) excitons, also
known as trions [12-17]. In n-type RTDs, the X+ is typ-
ically observed for voltages near photo-generated hole
resonances (hole-rich region), and the X− emission is
observed for voltages around electron resonances
(electron-rich region) [15]. The contact layer emission
comprises additional transitions that originate from in-
direct transitions from the two-dimensional electron
(2DEG) and hole gases (2DHG) created next to the
barriers. We remark that those 2D gases have voltage-
controlled g-factors and carrier densities. Under
magnetic fields, the 2D gases are usually strongly spin-
polarized [18-21] and can contribute to the polarization
of the carriers in the QW by injecting preferentially
polarized carriers at different applied biases. The PL
spectra are very sensitive to the variation of charge
density and therefore will be voltage dependent.
Typically polarized resolved QW PL spectra at 15 T
from our device are shown in Figure 1b. We observed
that QW PL presents two peaks. These peaks are solely
observed around the electron resonance. As shown in
Figure 1b, the voltage dependence of these peaks is con-
sistent with the attribution of the negatively charged
exciton or X− (the lower energy peak) and the neutral
exciton (X) (the higher energy peak). For our experimental
conditions, the X− ground state should be the singlet
state which consists of one hole and two electrons with
antiparallel spins.
The current-voltage characteristics I-V curve and the

color-coded maps of the polarized resolved PL emission
as a function of bias voltage for the contact layers, and
the QW is shown in Figure 2 for B = 0 and 15 T. I-V
curves present a dominant peak associated to the
electron-resonant tunneling condition. Under magnetic
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Figure 2 I-V characteristics curve and color-coded maps of polarization-resolved PL intensities. I-V characteristics curve and color-coded
maps of polarization-resolved PL intensities as a function of voltage for contact layers (left image) and QW under B = 15 T (right image).
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field, the additional peaks are revealed after the major
resonance and are attributed to the inelastic scattering-
assisted resonant tunneling [22]. The optical emission
from the GaAs contact layers includes several bands
represented on Figure 1: the bulk-exciton transition
from the undoped GaAs spacer layers, the recombin-
ation between photo-generated holes and donor-related
electrons from the n-doped GaAs layers, and the indir-
ect recombination between free holes (electrons) and
confined electrons (holes) localized at the 2DEG (or
2DHG) formed at the accumulation layer next to the
barriers (labeled 2DEG-h and 2DHG-e emissions). We
point out that the 2DHG-e emission is observed both
without and under applied magnetic fields. However, this
emission is only observed for low voltages, and as for
the larger voltages, the relatively small reservoir of
photo-created holes (2DHG) accumulated at the top bar-
rier interface must be mainly depleted. In contrast, the
2DEG-h emission is only observed under high magnetic
fields and higher voltages. Its intensity (Figure 2) pre-
sents an abrupt increase at 0.85 V which is consistent
with the increasing electron density accumulated at the
2DEG just after the resonant tunneling condition. For
larger voltages, the 2DEG-h emission tends to vanish,
which may be associated to a reduced efficiency on the
localization of holes around the 2DEG due to the signifi-
cantly large electric field or to reaching a critical density
of electrons at the 2DEG. Figure 2 shows that the QW
PL intensity increases with increasing applied voltages
during the resonant condition and decreases after the
resonant tunneling condition. Particularly, the QW PL
intensity presents a good correlation with the I-V charac-
teristics curve due to the voltage-controlled electron/
hole carrier density at the QW.
Figure 3a presents the I-V characteristics curve and

the voltage dependence of the spin-splitting energy for
the X and X− emission lines. The X− results are pre-
sented only for the range where this emission is
observed around the electron resonance. We observed
that the spin splitting of the neutral exciton presents
some correlation with the I-V curve. This behavior was
previously observed and is associated to a variation the
effective electric field in the QW region [4]. Figure 3b
presents the voltage dependence of the total integrated
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Figure 3 I-V characteristics curve and voltage dependence of polarization resolved photoluminescence. (a) I-V characteristics curve and
voltage dependence of X and X-spin splitting of the PL spectra, (b) voltage dependence of the total integrated QW PL intensity and (c) circular
polarization degree of excitons and trions in the QW and of the 2DEG-h emission.
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QW PL intensity. As discussed before, the total inte-
grated QW PL intensity presents a much clear correl-
ation with the I-V curve for both σ+ and σ− emissions.
Particularly, the peak of PL intensity is observed around
0.2 V, which is associated to a photo-generated hole res-
onant tunneling. This hole resonance is only observed in
the I-V curve under higher laser intensities (not shown).
After the electron resonance, we observed several peaks
attributed to the satellites peaks due to inelastic
scattering-assisted resonant tunneling.
The circular polarization degree was calculated by the

following equation:

P ¼ Iσþ � Iσ�ð Þ= Iσþ þ Iσ�ð Þ

where Iσ+ (Iσ−) are the integrated intensity of the right
(left) circular polarization. Figure 3c presents the circu-
lar polarization degree obtained from the QW and
2DEG-h emissions under 15 T and 4 K. The polarization
degree from 2DHG-e optical emission is not presented
because this emission becomes too weak under high
magnetic field. We have observed that the polarization
degree from free exciton and negatively charged exciton
in the QW are voltage dependent. Particularly, we have
observed that the X− polarization degree is slightly lower
than the X polarization degree. If we suppose that our
system is an isolated QW under thermal equilibrium, we
should expect some difference in the polarization degree
of the PL emission from trions and excitons due to their
different g-factors and lifetimes [23-25]. In our case, the
situation is even more complex, as our system has some
particularities if we compare to an isolated QW. The
generation of carriers at the RTD QW is dominated by
tunneling of carriers from the accumulation layers.
Those carriers can be either photo-created at the contact
layers or originate from doping. Therefore, the gener-
ation rates of carriers with distinct spin polarizations at
the RTD QW should depend on the g-factor at the
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accumulation layers and the tunneling efficiencies for
carriers with distinct spin polarizations. Furthermore,
the thermal equilibrium is no longer a good approxima-
tion, i.e., we should use modified lifetimes that depend
not only on the recombination time, but also on the tun-
neling times in a complex form.
Consequently, a simple evaluation of the polarization

degree considering the thermal equilibrium and conven-
tional parameters from regular GaAs QWs is not realis-
tic for our structure. It is important to point out that
clearly the voltage dependence of the QW polarization
degree does not follow the voltage dependence of the
spin-splitting energy from this emission (Figure 3a).
Therefore, it cannot be attributed to a simple thermal
occupation effect of the QW excitonic states. Figure 3b
shows that the polarization degree of 2DEG-h emission
is also voltage dependent. In general, the increase of the
applied voltage on the RTD results in strong variations
of the carrier densities at the accumulation layers and,
therefore, in the changes of the filling factors of 2D gases
in the structure. The 2DEG-h polarization degree is
higher than the QW polarization degree which indicates
some spin polarization loss on the tunneling processes
probably due to the efficient scattering processes in this
voltage region. However, a quantitative analysis of the
QW polarization must also consider additional effects,
including the thermal occupation of the QW levels, the
trion formation, and the loss/gain of spin polarization
during the tunneling processes.

Conclusions
In conclusion, we have observed that the polarization
degree from neutral and charged excitons in the QW
and from the 2D gases emissions formed at the accumu-
lation layers of n-type RTDs are voltage dependent.
Under applied bias and magnetic field, the resonant tunnel-
ing diode creates a highly spin-polarized two-dimensional
gas which seems to act as a spin-polarized source of
injected carriers to the structure. The spin injection to the
QW seems to be especially efficient under low voltages
(before electron resonance) when we observe a clear dis-
crepancy between the relatively small spin-splitting energy
and a rather large circular polarization degree. Under
higher voltages, the QW polarization may depend on other
additional effects, including trion formation and the loss/
gain of spin polarization during the tunneling processes in
and out of the QW.
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