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Abstract

A new composite system, Ba(Zrgo7Tigg3)O3 (BZT93) ceramic/NiO nanoparticles, was fabricated to investigate the
effect of NiO nanoparticles on the properties of these composites. M-H hysteresis loops showed an improvement
in the magnetic behavior for higher NiO content samples plus modified ferroelectric properties. However, the 1 vol.
% samples showed the optimum ferroelectric and ferromagnetic properties. Examination of the dielectric spectra
showed that the NiO additive promoted a diffuse phase transition, and the two phase transition temperatures, as
observed for BZT93, merged into a single phase transition temperature for the composite samples.
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Background

Ferroelectric materials are widely used in a broad range of
applications, especially in the design of electronic devices
such as non-volatile memory, capacitors, transducers,
actuators, etc. [1,2]. Barium zirconate titanate (Ba(Zr,Ti;_,)
O3) [BZT] is one such interesting ferroelectric material due
to its high relative permittivity, which makes it a very
attractive material for use in capacitor applications such as
boundary layer capacitors and multilayer ceramic capaci-
tors [3-6]. Furthermore, BZT for some compositions exhi-
bits high ferroelectric and piezoelectric properties. Due to
the environmental concern, this material is also beneficial
since it is a lead-free material.

Recently, much attention has been paid to multiferroic
materials because of the coexistence of ferromagnetic and
ferroelectric ordering at room temperature. However, mul-
tiferroic materials which exhibit both high ferromagnetic
and ferroelectric properties are very rare. This is because
ferromagnetic materials need transition metals with
unpaired 3d electrons and unfilled 34 orbitals, while ferro-
electric polarization requires transition metals with filled
3d orbitals [7]. An alternative way to obtain high
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ferromagnetic and magnetic properties is to produce com-
posite materials which contain combined ferroelectric and
magnetic phases. These materials are called multiferroic
composites, and many authors have fabricated and
reported the properties of multiferroic composites [8]. In
this work, a new system of multiferroic composites was
fabricated. The BZT in the composition of Ba(Zrg g, Tig.93)
O3 (BZT93) was synthesized and used as matrix for the
composites. NiO nanopowder with a particle size of
approximately 100 nm was added to BZT93, and the
mixed materials were sintered at various sintering tem-
peratures to form the composites. Properties of the com-
posites were then determined and reported.

Methods

The composites were prepared by a conventional mixed-
oxide method. BZT powder was prepared based on the
stoichiometric formula Ba(Zr ¢, Tip.93)O3. The raw metal
oxide, BaCOs3, TiO,, and ZrO, were mixed and calcined at
1,200°C for 2 h. Different volume ratios (0, 1, 2, and 3 vol.
%) of the NiO nanoparticles (Sigma-Aldrich Corporation,
St. Louis, MO, USA; with a particle size of < 100 nm)
were mixed with the BZT93 powder and then milled for
24 h. The ball-milled powders were pressed into a disk
shape and then sintered at temperatures ranging from
1,250°C to 1,450°C for 2 h. The densities of all the disks
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were determined after sintering using the Archimedes
method. Phase formation of the sintered ceramics was
investigated by X-ray diffraction [XRD] technique. The
magnetic properties were measured using a vibrating sam-
ple magnetometer of the Lake Shore Model 7404 (Lake
Shore Cryotronics, Inc., Westerville, OH, USA). The ferro-
electric properties were performed using a Sawyer-Tower
circuit. Relative permittivity and tangent loss were mea-
sured as a function of temperature using an LCR meter.

Results and discussion

Densification and phase formation

In this study, a range of sintering temperatures was used
to fabricate the tested composites to determine the opti-
mum sintering temperature which provided the optimum
properties. For pure BZT93 ceramics, the optimum sinter-
ing temperature was 1,450°C, while for the BZT93-NiO
composites, 1,300°C. This lower sintering temperature is
due to the mismatch between the different components,
leading to an inhibition of the sintering ability. The opti-
mum sintering temperature samples were selected for
characterization. The phase formation of the pure BZT93
ceramic and composites sintered at an optimum sintering
temperature was determined using the XRD technique at
room temperature. The XRD results are shown in Figure
1. For the pure BZT93, the XRD pattern corresponded to
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a pure orthorhombic perovskite phase [9,10]. In the case
of the composites, the XRD peaks at 26 ~ 37° and 44° indi-
cated an impurity phase. The impurity peaks were identi-
fied as NiO, corresponding to the JCPDS file no. 044-
1159, confirming a formation of the composites.

Magnetic and ferroelectric properties

Figure 2 shows the M-H magnetic hysteresis loops of the
samples measured at room temperature. The 1 vol.% sam-
ple exhibited a weak magnetic behavior. However, an
improvement in magnetic properties was clearly observed
for the composites containing NiO > 1.0 vol.%. The values
of the coercive magnetic field [H.] and remnant magneti-
zation [M,] of the samples are listed in Table 1. Figure 3
shows the P-E ferroelectric hysteresis loops (at room tem-
perature) with different NiO contents. The shape of the
hysteresis loop for the pure BZT93 ceramics indicates a
normal ferroelectric behavior. For samples with higher
NiO concentrations, however, the hysteresis loop became
more slanted. Furthermore, a lossy capacitor hysteresis
loop was clearly observed for the 3 vol.% sample. This may
be due to the NiO additive producing a higher electrical
conductivity or higher leakage characteristic in the sam-
ples. The ferroelectric properties such as remanent polari-
zation [P,] and coercive field [E.] are shown in Table 1.
Based on the results, the 1 vol.% samples showed the
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Figure 1 X-ray diffraction patterns of pure BZT93 and BZT93/NiO composites.
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Figure 2 Magnetization (M) vs. applied magnetic field (H) of the pure BZT93 ceramic and composites.

optimum properties combining between the ferroelectric
and ferromagnetic properties (M, = 0.02 emu/g, H, = 4.51
kOe, P, = 13.1 uC/cm?, and E, = 9.9 kV/cm) of this com-
posite system. These ferromagnetic and ferroelectric prop-
erties were considerably high for single-phase multiferroic
materials [11,12] and other multiferroic composites
[13,14].

Dielectric properties and phase transition

Figure 4 shows plots of the relative permittivity and loss
tangent as a function of temperature at various NiO con-
centrations. Two phase transition peaks in the permittiv-
ity curve were observed for the pure BZT93. The relative
permittivity and loss tangent curves for the pure BZT93
ceramic are similar to those reported in a previous work
[8,15]. Furthermore, all samples showed a weak fre-
quency dispersion of the relative permittivity. However,

Table 1 Unit cell volume, magnetic, and ferroelectric
properties of BZT93/NiO composites

NiO  Unit cell volume M, H, P, E. oy
(vol.%) (A3 (emu/g) (kOe) (uC/cm?) (kV/cm) (°C)
0 6505 0 0 159 57 392
1 65.26 002  45] 13,1 99 525
2 65.30 084 35 148 127 533
3 65.31 28 333 231 164 583

M,, remnant magnetization; H,, coercive magnetic field; P,, remanent
polarization; E, coercive field; d,, diffuseness parameter.

an obvious change in the relative permittivity curve was
observed when NiO was added to the samples. The tran-
sition temperature [7,] at maximum relative permittivity
[er, max] decreased from 105°C for the pure BZT93 cera-
mics to 60°C for the 1.0 vol.% sample, then gradually
decreased to 57°C for the 3.0 vol.% sample. Moreover,
the maximum relative permittivity decreased from 12,000
for the pure BZT93 ceramics to 3,200 for the 3.0 vol.%
samples. In addition, the two phase transition tempera-
tures merged into a single diffuse phase transition at
higher NiO contents (Figure 4d). To check the effect of
NiO on the degree of the diffuse phase transition, diffuse-
ness parameter [J,] was determined using the following
expression:

T —Tm)?
) eXp<( 25y2) )

The value of 9, was determined from a plot of In (&, max
/e,) versus the (T - T,,)? [16]. The values of 0y as a func-
tion of NiO content are shown in Table 1. The parameter
0, increased with increasing NiO content, confirming that
the addition of NiO promoted the diffuse phase transition
of the composites.

Huang and Tuan proposed that Ni ions could substitute
the Ti ions in BaTiOj3 lattices [17]. It has also been
reported that La** doped at the Ti site of BaTiO5 ceramics
exhibits a change in the transition temperature as well as a
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Figure 3 P-E hysteresis loops. (a) Pure BZT93, (b) BZT93 + 1 vol.% NiO, (c) BZT93 + 2 vol% NiO, and (d) BZT93 + 3 vol.% NiO.
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pronounced diffuseness transition [18-22]. The La ions are
effective in breaking the long-range order and produce Ti
vacancies. This breakage of long-range ordering leads to a
reduction of the ferroelectric characteristics and enhances
the diffuse phase transition. In our present work, unit cell
volume was calculated from XRD diffraction patterns, and
the calculation result is listed in Table 1. The calculation
result indicated an increase in the unit cell volume after
adding NiO. This increase may be due to the Ni ions sub-
stituting the Ti ions (at the B site). Therefore, substitution
of the Ni ions at the B site may result in breaking the
long-range ordering, resulting in a reduction of the ferro-
electric behavior with the transition becoming more dif-
fuse [23]. Further, with increasing NiO content, the
structure of the composites became more heterogeneous.
This may contribute to the diffuse phase transition of the
samples. From Figure 4, the increase of loss tangent with
NiO content implies a higher electrical conductivity of the
composites. However, the highest loss tangent in the pre-
sent work was lower than 0.035, indicating that the

present composites still have a potential for capacitor
applications. This result also supports the reason for the
presence of the lossy capacitor hysteresis behavior of the
composites.

Conclusions

In this work, the properties of BZT93/NiO composites
were determined for the first time. X-ray diffraction
results revealed the presence of NiO particles in the
composites. The additive of NiO nanoparticles enhanced
the magnetic behavior. The increase of loss tangent
affected the ferroelectric hysteresis where a lossy capaci-
tor hysteresis loop was clearly observed for the sample
containing high amounts of NiO. However, the 1.0 vol.%
samples showed the optimum magnetic/ferroelectric
behavior. In addition, the additive also promoted the
dielectric diffuse phase transition behavior while loss
tangent values were still low. These characteristics of
the composites may make them have potential for many
electronic applications in the future.
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Figure 4 Relative permittivity and loss tangent as a function of temperature. (a) Pure BZT93 ceramic, (b) BZT93 + 1.0 vol.% NiO, (c) BZT93
+ 2.0 vol% NiO, and (d) BZT93 + 3.0 vol.% NiO.
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