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Abstract

Nanoporous carbon microfibers were grown by chemical vapor deposition in the vapor-liquid solid mode using
different fluid hydrocarbons as precursors in different proportions. The as-grown samples were further treated in
argon and hydrogen atmospheres at different pressure conditions and annealed at several temperatures in order to
deduce the best conditions for the incorporation and re-incorporation of hydrogen into the microfibers through the
nanopores. Since there are some discrepancies in the results on the hydrogen content obtained under vacuum
conditions, in this work, we have measured the hydrogen content in the microfibers using several analytical methods
in ambient conditions: surface tension, mass density, and Raman measurements. A discussion on the validity of the
results obtained through the correlation between them is the purpose of the present work.

Keywords: Raman dispersion, Chemical vapor deposition, Nanoporous materials

Background
Hydrogen is known to be the most common element in
the Milky Way, and it represents 74% in content, fol-
lowed by helium (24%), oxygen (1%), and carbon (0.4%)
[1]. It is found in a large amount of chemical compounds,
particularly in carbon-rich and organic materials. Atomic
hydrogen is unstable, and it is usually found in combina-
tion with other elements (hydrocarbons, polymers, water,
etc.) or as a diatomic molecule. Hydrogen is used, as least
in prototypes, in fuel cells, which is a very important
issue in energy storage [2]. Another interesting applica-
tion is thermoelectricity; the electrical conductivity and
the Seebeck coefficient can be engineered by changing the
hydrogen content [3].
On average, the storage capacity of hydrogen in car-

bon nanostructures is of the order of 1.5 wt.%, although
the storage capacity can significantly change with the des-
orption temperature [4] or hydrostatic pressure [5]. For
instance, single-walled carbon nanotubes (CNTs) show a
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hydrogen uptake of 5 to 10 wt.% at 133 K and 40 kPa
[6]. It has also been shown that single- or multi-walled
CNTs adsorbed a hydrogen amount of 3 to 4 wt.% at room
temperature but at 10 MPa [7,8].
An important problem in this research field is to have

a confident measurement of the hydrogen content. This
is not an easy matter because of the depletion of hydro-
gen when the fibers are in a vacuum environment [9], and
many of the used techniques need vacuum conditions.
Techniques such as elastic recoil detection analysis show
unsatisfactory sensitivity since it works with the samples
placed into a high vacuum chamber [10]. It was also dif-
ficult to obtain confident results in the measurement of
the hydrogen content by reflection electron energy loss
spectroscopy; the measurement error was not lower than
20% [11].
In this work, we study carbon fibers grown by chem-

ical vapor deposition, a method which allows obtaining
a good-quality material under a reasonable cost. The
vapor growth produces filaments of some centimeters of
length and microfibers with a length smaller than 100μm.
The manufacturing process of vapor-grown carbon fibers
(VGCFs) has been previously described in the literature
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[12]. They have been prepared incorporating metallic par-
ticles of group VII to the gas flow entering into the reac-
tor. Although VGCFs synthesized with a metallic catalyst
have received special attention in many fields because of
their controllable structure and attractive mechanical and
electrical properties [7,13], one of the most important
applications of VGCFs in the near future will be as hydro-
gen storage materials, mainly in the form of nanowires
because of its large surface for hydrogen incorporation.
In this work, we have studied the hydrogen content in
VGCFs, both filaments and microfibers, restricting the
analysis to techniques which do not need vacuum, and
try to select the more confident technique for measuring
the hydrogen content in porous materials, particularly in
carbonaceous specimens.

Methods
Crystal growth and sample preparation
The precursors for the growth of samples A to C, and
D and E are basically hydrogen, methane, ethane, and
benzene. They have been grown in vapor-liquid-solid
mode in a furnace at 1,323 K within a quartz ampule.
The microfibers were prepared using small iron parti-
cles as catalyst. These particles came from minute drops
of ferrocene solved in alcohol. Once evaporated, they
were placed in a hot hydrogen environment. In this way,
they have been turned into minute chips of active metal-
lic iron. The growth temperature of our furnace was
1,323 K in all cases. As a result, minute fiber-type fly-
ing seeds (FS) are created. If the catalyst particles are
deliberately placed on a substrate, carbonaceous microfil-
aments or filaments grown on a substrate (FGS) of some
centimeters of length are created on the substrate. The
description of the raw atmosphere for the sample prepa-
ration is given in Table 1. The five samples (A to E)
have received further treatments to analyze the incorpora-
tion and refilling of hydrogen (producing samples F to I).
The raw atmosphere, temperature, and pressure condi-
tions for the fabrication of samples F to I are shown
in Table 2.

Table 1 Set of samples grown as explained in the text

Sample Type Raw atmosphere

A FGS 70% H2 + 30% CH4

B FGS H2 bubbling in C6H6

C FGS 70% H2 + 15% CH4 + 15% C2H4

D FS 70% H2 +30% CH4

E FS H2 bubbling in C6H6

Samples A, B, and C are filaments grown on asubstrate and samples D and E
flying seed type fibers. FGS, filaments grown on a substrate; FS, flying seed type
fibers.

Table 2 Samples obtained after further treatment on
samples A and B (FGS)

Sample TA (K) Atmosphere P (bar) tA (h)

F(A) 727 Ar 1 1

G(A) 927 Ar 0.2 2

H(G) RT H2 200 24

I(H) RT H2 0.00133 24

J(A) RT H2 200 24

K(B) RT H2 200 24

Column 2 shows the annealing temperature, and the last column, the annealing
time. RT, room temperature.

Thermogravimetricmeasurements
In order to carry out a rough comparison between the
samples, thermogravimetric measurements (TGA) were
performed using a TGA system. The samples were kept
in Ar atmosphere, and the heating velocity was 2 K/min
between 323 and 473 K and 20 K/min between 473 and
1,023 K.

Surface energymeasurements
In the present study, we used the contact angle measured
in a sessile drop test as theway to evaluate the surface area.
Following Fowkes [14], the following relationship exists
between the contact angle θ and the surface energies γL
and γS of the liquid and solid, respectively:

γL(1+ cos θ)

2
=

√
γ
p
S γ

p
L +

√
γ d
S γ d
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where the upper index p and d are used to distinguish the
polar and dispersive components (γL = γ

p
L + γ d

L ; γS =
γ
p
S +γ d

S ) of the surface energy. By using two liquids, a polar
liquid (for instance, glycerol: γ d

L = 37 mN/m and γ
p
L =

26.4 mN/m) and a non-polar liquid (as vaseline oil: γ d
L =

22.3 mN/m), we were able to obtain γ
p
S and γ d

S from the
measurements of the contact angles with the VGCFs.

Densitymeasurements
In the work of Madroñero et al. [15], it was shown that the
external part of the VGCFs is composed of two phases:
an amorphous matrix and graphitic platelets. The hydro-
gen adsorption takes place basically in the amorphous
phase because the accumulation of hydrogen is more
intensive in defects [16]. According to that, it is reason-
able to assume that the relationship between the amount
of stored hydrogen and the density should not be very
different from the established relation for amorphous
hydrogenated films [17]. It can be accepted that the rela-
tion between density and hydrogen content follows the
Gaussian expression [18]:

ρ = 1.79− 0.4274 e−2[(x−0.46)/0.28]2 (2)



Culebras et al. Nanoscale Research Letters 2012, 7:588 Page 3 of 5
http://www.nanoscalereslett.com/content/7/1/588

where ρ is the density in g/cm3 and x is the hydrogen
content in wt.%. As the first step, the mass of each sample
was determined. Then, the volume was established using
a gas pycnometer with helium. The hydrogen content of
each sample has been calculated from Equation 2.

Ramanmeasurements
ARaman confocal microscope (Renishaw 2000, Renishaw,
Gloucestershire, UK) has been used in the analysis. It
was provided with a Leica microscope (Leica, Solms,
Germany), a nitrogen-cooled charge couple device, and an
air-cooled Ar ion laser (514.5 nm) as excitation source.
A ×50 objective has been utilized. The spectra of all the
samples have been evaluated by the own software of the
system.

Results and discussion
Figure 1A,B shows two images obtained by scanning elec-
tron microscopy (SEM). The fibers observed in these
images were fabricated frommethane and hydrogen (sam-
ples A and D following Table 1): the first image shows a
FGS fiber, while the second, a FS fiber.
Thermogravimetric tests correspond to three repre-

sentative samples, one as grown (A), a second sample
overcharged (J(A)), and a third one recharged after clear-
ing (H(G)). The objective of these tests was to check if
some irregularities in the curve of weight loss may sug-
gest complexity in the outgassing mechanism. Figure 2
shows the thermograms of samples A, J(A), and H(G). As
can be observed, there is no preferential temperature for
the hydrogen taking off in the outgassing process. This
fact may suggest a simple process of outgassing without
a hydrogen diffusion mechanism [19], which has been
widely described in the scientific literature.
The Raman spectra of carbonaceous materials consist

of two main broad peaks known as G-band (G stands
for ‘graphite’) and D-band (proportional to the level of
‘disorder’ or defects) [20]. The G-band is located around
1,575/cm, and it is assigned to a doubly degenerated defor-
mation vibration of the hexagonal ring corresponding to

the E2g mode of graphite with D4
6h crystal symmetry. The

D-band is located around 1,355/cm, and it is an indication
of the crystal size [21]. The existence of theD-band points
out the existence of disorder-induced scattering. During
the process of carbonization of polymers through thermal
treatment at increasing temperatures, the intensity of the
D-band decreases (indicating recrystallization). When the
D-band disappears completely, the material has turned
into a well-ordered graphite [22] material with no defects
(obviously, a neglected defect concentration).
Therefore, we may suggest that the variation of the ratio

between the intensity of the D and G peaks indicates an
alteration in the graphitic character of the material [23].
For this reason, the relationship between the intensity of
the peaks D/G has been generally used to predict the
elastic modulus of carbon thin films [24] and CNTs [25].
This relationship points out the alteration of crystalline
perfection.
We have correlated the surface energy and density mea-

surements with that of the Raman ratio of theD/G inten-
sities. Figure 3 shows the correlation between the surface
energy measure with the sessile drop method as indicated
in the previous section with that of the Raman ratio D/G.
Although the line is a linear square fit, there is no evi-
dence of a linear correlation, but we can roughly observe
an increase of the surface tension when the quantity of
defects (the decrease of theD intensity in the Raman spec-
tra) is decreased. A first point to be noticed in the figure is
that the FGS samples have a smaller surface tension (27−
35 mN/m) than that of the FS samples (57 to 62 mN/m),
nearly one half, and a smaller defect concentration. By
looking at Table 2, we can realize that the increase in the
annealing temperature and the outgassing time on sample
A (F(A) and G(A)) increases enormously the surface ten-
sion and probably the recrystallization. Annealing sample
A (J(A)) in a hydrogen atmosphere and high pressure
increases the number of defects and the surface tension.
In sample B, however, the annealing with hydrogen at
high pressure (K(B)) produces nearly no effect in the sur-
face tension or recrystallization. The same happens for

Figure 1 SEM images of a filament grown on a substrate (A) and a microfiber-type flying seed (B).
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Figure 2 Thermogravimetric records. Samples A (solid black line),
H(G) (dashed red line), and J(A) (dotted blue line).

samples H(G) (refilling) and I(H) (annealed in vacuum in
a residual hydrogen atmosphere); the surface tension and
number of defects is very close to sample G(A).
In Figure 4, the change of D/G as a function of the

hydrogen content derived from the density measurements
using Equation 2 is shown. Given the good linear correla-
tion between the ratio D/G and the hydrogen content, we
have made a linear fit. Although it crosses zero because
we left only the slope as fitting parameter in the linear
fit, it may not necessarily cross zero. There is probably,
at some point, a saturation effect given a finite value of
the Raman ratio for zero hydrogen content since a sam-
ple without hydrogen is not necessarily perfect. From the
comparison of the results for samples A, B, and C shown
in Figure 4, it is observed that the feedstock atmosphere
composition have an observable but not very remarkable
influence on the hydrogen content in the case of FGS; to

Figure 3 Correlation between surface tension and the Raman
ratioD/G .

Figure 4 Correlation betweenD/G and the hydrogen content
derived from density measurements. The line is a linear fit, keeping
only the slope as a parameter. Actually, it does not necessarily cross
zero (perfect sample with no defects).

a methane atmosphere precursor corresponds a hydro-
gen content of 0.19%, to a benzene precursor corresponds
a hydrogen content of 0.22%, and to methane-ethylene,
0.15% of hydrogen. In FS fiber samples (D and E), the
hydrogen content is smaller than in the FGS. In the case of
sample G(A), the desorption is more pronounced because
besides the temperature, the vacuum per se produces an
outtake of hydrogen in this type of fibers [26]. The small
difference between the hydrogen content of samples A and
J(A) suggests that the refilling from a high-pressure atmo-
sphere of hydrogen is not effective, and the sample to be
recharged was not activated for hydrogen adsorption [7].
The same conclusion is valid for the comparison between
K(B) and B. Themore unexpected change is that observed
in the variation from G(A) to H(G). The question is that
G(A) was submitted to an annealing with a temperature
higher than 500°C. It is well established that spangles of
graphene after an annealing around 500°C releases all the
fluctuant hydrogen, and the C-H bonds resting in the final
material are very stable because they are sp3 bonds [27].

Conclusions
From the analysis and comparison of the different tech-
niques used to measure the hydrogen content in the
carbonaceous materials, we can conclude that the density
and Raman measurements are the most confident tech-
niques since there is a clear linear correlation between
the hydrogen content extracted from the density mea-
surements and the D/G ratio of the Raman peaks. In any
of these techniques, vacuum is needed for the measure-
ments, and we can ignore the discussion or the evaluation
on the effect of the vacuum conditions on the final results.
From the results, we can also conclude that the samples
with more hydrogen content are those grown bubbling
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hydrogen in benzene: B compared with C and A (FGS),
and E compared to D (FS).
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