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Abstract

We report on efficient terahertz (THz) emission from high-electric-field-biased SiC structures with a natural
superlattice at liquid helium temperatures. The emission spectrum demonstrates a single line, the maximum of which
shifts linearly with increases in bias field. We attribute this emission to steady-state Bloch oscillations of electrons in
the SiC natural superlattice. The properties of the THz emission agree fairly with the parameters of the Bloch oscillator
regime, which have been proven by high-field electron transport studies of SiC structures with natural superlattices.
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Background
The possibility of oscillating motion of electrons in crys-
tals at high field bias has attracted great interest since
it was predicted [1,2]. The Bloch oscillations (BO) with
frequency (ν)

ν = eFa/h, (1)

where e, h, and a are the electron charge, the Plank con-
stant, and the crystal lattice period, respectively, originate
from the acceleration of electrons in an electric field and
their Bragg reflection at the Brillouin zone boundary. One
important condition must be satisfied to achieve the BO
regime, namely:

eFl ≥ E1 or F ≥ Ft = E1
el

(2)

where l is the electron mean free path, E1 is the width of
the allowed electron band (the subscript 1 corresponds to
the bottom electron band), and Ft is the threshold elec-
tric field of the BO regime. A thorough analysis of the
electron localization effect in high electric fields [3] has
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revealed that the energy continuum splits into the dis-
crete, so-called Wannier-Stark ladder states in the electric
field, which are the frequency-domain equivalent of Bloch
oscillations. Esaki and Tsu, in their pioneering work on
semiconductor superlattices [4], pointed out that BO of
electrons in superlattices with narrow minibands can be
observable even for modest fields. Photocurrent, photolu-
minescence, and electroreflectance experiments on biased
structures with artificial superlattices of GaAs/AlGaAs
[5,6] have proven the existence of theWannier-Stark local-
ization (WSL) effect in semiconductor superlattices. The
most substantial evidence for BO in artificial superlat-
tices was found in experiments with ultrashort light pulses
[7-12]. The results of [7-12] demonstrated a few cycles
of BO, which, however, were damped after 1 to 2 ps. It
was suggested [13] that the fast damping of BO in arti-
ficial superlattices originates from electron scattering at
the interfaces of heterojunctions and also from break-
ing the equidistance of the Wannier-Stark levels. The fast
decay of BO leaves room for doubts about the possibil-
ity of the practical application of this phenomenon [13].
Apparently, the present level of semiconductor technology
cannot provide artificial superlattices with sufficient qual-
ity suitable for the creation of terahertz (THz) emitters
based on BO.
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One interesting system demonstrating superperiodicity
and potentially having none of the aforementioned draw-
backs is a natural superlattice (NSL) in SiC crystals. It is
known [14,15] that all SiC polytypes, excluding the cubic
3C-SiC and hexagonal 2H-SiC, exhibit superperiodicity in
the direction along the crystal c-axis in a similar way to
crystals with artificial superlattices. The superperiodicity
is absolutely stable and has precise crystalline parameters
[14]. This superperiodicity is self-organized in the main
SiC crystal lattice, and the NSL periods, d, for such poly-
types as 4H-, 6H-, and 8H-SiC are equal to 5, 7.5, and 10
Å, respectively [14]. The elementary cell of the hexago-
nal polytype 4H-, 6H-, and 8H-SiC contains 8, 12, and 16
atoms, which is many times higher than the number of
atoms in the 2H-SiC polytype elementary cell. Therefore,
in accordance with the theory of Brillouin Zones (BZ) [16],
the electron spectrum, for example, of the 6H-SiC crystal
in the direction of the c-crystal axis should be considered
in the extended BZ composed of six classical Brillouin
zones of the crystal. In this case, the electron energy is
not a continuous function of wave vector but undergoes
breakups at certain planes in k-space. It was shown that
the major energy breakups occur at 2π/c and 4π/c points
for 6H-SiC [15], and at 2π/c, 4π/c, and 6π/c points for
8H-SiC, where c is the size of the elementary cell along
the c-axis. It explains the appearance of the NSL with the
period d = c/2 and the miniband electron spectrum in
hexagonal SiC polytypes.
Electron transport studies on SiC structures with the

natural superlattices [17,18] have demonstrated pro-
nounced effects of the negative differential conductivity
(NDC) caused by the Wannier-Stark localization phe-
nomenon. The threshold fields of the NDC onset at
300 K were found to be Ft ≈ 110 ± 25 kV/cm, Ft ≈
150 ± 30 kV/cm and Ft ≈ 290 ± 60 kV/cm for the 8H,
6H, and 4H polytypes, respectively [18], which is in good
agreement with Equation 2. It is important to note that
the observed values of the NDC [18] were two orders of
magnitude higher compared with that reported for artifi-
cial superlattices (see, for example, [19-21]). These results
mean that there is a well-grounded hope of achieving THz
emission due to the Bloch oscillations in SiC NSL. This
paper reports on the experimental observation and stud-
ies of THz electroluminescence (1.5- to 2-THz spectral
range) from SiC structures with a natural superlattice. We
attribute this emission to the electron Bloch oscillations in
the SiC natural superlattice.

Methods
Theory of electron transitions in the Wannier-Stark ladder
of silicon carbide natural superlattices
The internal quantum yield of the THz emission due to
optical transitions between Wannier-Stark levels in the
natural superlattice of 6H-SiC was estimated. The band

diagram of the 6H-SiC NSL depicted in Figure 1 was used
for these estimations.
The values for the quantum well width and the energy

width of the first electron miniband were taken to be
consistent with the experimental data [17,18,22,23] on
high-field transport in SiC natural superlattices, which
have demonstrated the evolution of the fundamental
stages of WSL in these systems (the transition from
a relatively small field regime of Bloch oscillations to
large field regimes: the Stark-phonon resonances between
Wannier-Stark ladder levels, the full localization of the
lowermost miniband, and inter-miniband resonance tran-
sitions between the first and secondminibands). Themost
important results of these transport studies are summa-
rized in Table 1.
Using the tight-binding approximation developed for

such systems by Bouchard and Luban [25], the amplitude
of the electron wave function can be expressed by the
transfer integrals between the nearest quantum wells V1:

|n〉 =
∞∑

l=−∞
Jl−n

(
2V1
eFd

)
ul(z), (3)

where Jn is the Bessel function of the first kind, order n,
and ul(z) is the wave function of the electron with the
energy El = leFd in the ground state of the quantum
well. Taking into account Equation 3, it is straightforward
to calculate the probability of an optical transition of an
electron between two adjacent quantum wells:

τ−1
rad = 4e2�ω

3π2d2(c/n)3m2 , (4)

where c/n is the speed of light in SiC, �ω = eFd is
the energy of the emitted quantum, and m is the elec-
tron effective mass. We suppose that the electric field
is insufficient for the inter-miniband resonant tunneling

Figure 1 Schematic diagram of Wannier-Stark states. Schematic
diagram of Wannier-Stark states in a 6H-SiC natural superlattice at a
modest uniform electric field. The solid and dotted curves depict the
envelope wave functions corresponding to different steps in the
ladder. The thick short lines correspond to the electron Wannier-Stark
levels confined within the first well (dashed lines).
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Table 1 Parameters of minizone transport in silicon carbide polytypes

SiC poly-type Ft for the Bloch F t for the Stark- Ft for complete Ft for resonance tunneling The width of the The gap between the Saturated velocity
oscillation of phonon resonance, localization of electrons between the first electron first and second Vs of electrons in
electrons, (105V/cm) (106V/cm) of the first electron first and second (106V/cm) miniband E1 (meV) minibands E1,2(meV) the first miniband

miniband, (106V/cm) F‖C, (cm/s)

4H 2.9 [18] 1.6,

2.0 [22] ≈ 500 3.3 × 106 [24]

6H 1.5 [18] 0.6, 1.1,

1.37 [22] 1.8 [22] 1.9 [22] 260 [22] 176 [22] 2.0 × 106 [24]

8H 1.1 [18] ≈ 140 1.0 × 106 [24]

15R 1.2 × 106 [24]

21R 4.4 × 103 [23]

Parameters of minizone transport in silicon carbide polytypes. Here, Ft is the threshold field, and (Est.) means an approximate estimation made on the basis of the experimental value of E1 for the 6H-SiC polytype and taking
into account the fact that E1 ∝ k2d , where kd = �/d and d is the NSL period. F, electric field. Ft , threshold electric field.
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of the electrons, and the major nonradiative process is
the transition between the nearest Wannier-Stark states
with the emission of the longwave acoustic phonons. The
corresponding probability of the nonradiative process is

τ−1
nonrad = �2√2m(eFd)5/2

π3d�3s3ρV1
, (5)

where � is the deformation potential constant, s is the
speed of sound, and ρ is the SiC material density. The
formula (5) is applicable only for a low electric field, which
satisfies eFd � 2πs�

d . There are two factors determin-
ing the strong dependence of τ−1

nonrad on the electric field.
Firstly, the conservation laws limit the phonon wave vec-
tors to small values in the weak electric fields. Secondly,
the electron wave function involves many quantum wells,
in this work ( E1

eFd ≈ 40), and the contributions ul(z) from
different quantum wells partly compensate each other.
The internal quantum yield, η, of the THz emission is

η = L
d

× τ−1
rad

τ−1
nonrad

(6)

where L is the NSL thickness.

Experimental content
The samples studied in this work were unipolar 6H-SiC
n+ − n− − n+ diode structures. The n− epitaxial layer
(the base of the diode) was grown by the sublimation
on-axis method [26] on a 6H-SiC (0001) Lely substrate,
which had Nd − Na ≈ 2 × 1018 cm−3 and a thick-
ness of 200 μm. The base had a donor concentration of
1015 cm−3 < Nd − Na < 1016 cm−3, and the thick-
ness was varied in the interval of 2 to 4 μm. The 6H-SiC
polytype of the epitaxial layer and its acceptable doping
homogeneity were confirmed by X-ray diffraction, pho-
toluminescence microscopy, and C-V measurements. The
latter measurements were done using auxiliary Schottky
barriers created on the n− layer surface. The top n+ layer
with Nd − Na ≈ 1020 cm−3 was fabricated on the n−
epitaxial layer by ion implantation of nitrogen with sub-
sequent annealing. Finally, the cylindrical mesa-structures
with a diameter of 50 μm (S = 2.0 × 10−5 cm2) and cru-
ciform mesa-structures (S = 3 × 10−5 cm2) (Figure 2a)
were made by dry etching after photolithography. For a
contact, a sputtered and annealed (900°C) nickel film with
a thickness of 0.2 μm was used. A common contact area
was located on the upper surface of the substrate. Insu-
lator layers were created by proton implantation on the
mesa-periphery and on the upper surface of the substrate.
In accordance with the aforementioned property of the
6H polytype of SiC crystals, such a diode structure was a
natural supperlattice as a whole.
The samples suitable for THz electroluminescence

experiments were chosen from a number of the prepared

Figure 2 General view of the structures. (a) General view of the
structures used for THz measurements. (b) Geometry of the
experiment.

mesa-structures by means of analyzing their I-V charac-
teristics at 300 K. The criterion for making this choice
was the observation of a mobile high-field domain, which
thereby confirmed the development of the WSL effect
in the mesa-structure [27]. The small mesa size con-
tributed to a higher yield of high-quality structures. The
diode structures selected in this way were used for inves-
tigations of the terahertz emission at liquid helium tem-
peratures. Low temperatures are preferable for this kind
of experiments because the intensity of electron scatter-
ing is reduced. Furthermore, the very low carrier density
at helium temperatures and the small thickness of the
n− layer contributed to a reduction in the probability of
domain formation.
For the low-temperature experiments, the samples were

placed on an insulating p-type SiC base. After silver wire
bonding, the assembly was mounted on the cold finger
of an optical cryostat, which was optimized for the THz
spectral domain. The geometry of the available structures
only permitted the observation of THz radiation though
the substrate. Parabolic mirror optics were used to collect
the THz emission in the direction normal to the substrate
surface within a solid angle of ≈30° (Figure 2b). Polar-
ization of the emission was not expected in this geometry
of the experiment, and therefore, all measurements were
made in the regime of integrated polarization.
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The sample under test was fed with a train of eight
pulses, where each pulse in the train was 1 μs in dura-
tion with a 950-μs time interval between the pulses.
It was paused in 7 μs, after which the next train was
begun. Thus, the repetition rate was about 75 Hz. Such
a bias was used to minimize lattice heating effects.
The duty cycle of the train was 50% at a frequency of
75 Hz. Such a bias was used to minimize lattice heat-
ing effects. The spectral measurements were performed
with a spectral resolution of 0.6 meV using a Fourier
spectrometer operating in the step-scan mode described
elsewhere [28]. To eliminate any influence of water vapor
absorption, the internal volume of the spectrometer was
evacuated down to a residual pressure level of 6 × 10−2

Torr. The THz emission signal was measured using
a liquid-helium-cooled silicon bolometer and a lock-in
amplifier.

Results and discussion
An intensive THz signal was detected at bias voltages
exceeding 190 to 195 V. The existence of such a thresh-
old voltage for the THz emission can be explained by
the impurity breakdown in the top n+-SiC layer, which
is required for injection of electrons into the NSL. Upon
reaching the breakdown of the top layer of the structure,
the bias voltage becomes redistributed, and some part of
it starts to drop to the base of the structure (n− layer). At
the same time, the intensity of the THz emission begins
to grow almost linearly with increases in current. The I-V
characteristic of the 6H-SiC n+−n−−n+ diode structures
and the dependence of the intensity of THz emission on
the current are demonstrated in Figure 3 (insert). The cur-
rent is practically absent at voltages below ≈180 V due to
extremely small carrier concentration in the active region
of the structure at helium temperatures, and the current
appears only as a result of the electron injection from the
top n+ layer.
Taking into account the precise calibration of the detec-

tor used here with the emission of a black body source
and also the measured attenuation factor of the experi-
mental instrumentation, we can conclude that the spec-
trally integrated THz emission peak power for the SiC
mesa-structure is about 10 μW at 46.2 W of peak pump-
ing power (0.21 A, 220 V). The corresponding external
quantum yield of the THz emission is about 0.01 THz
photons/electron. Estimations of the internal quantum
yield ( Equation 6) of the THz emission for the 6H-SiC
structures studied here with a NSL thickness of 2 μm
result in a value of η = L

d × τ−1
rad/τ

−1
nonrad ≈ 2, 667 ×

(1.8 × 105 s−1/1.3 × 1010 s−1) ≈ 0.04. This value is
in reasonable agreement with the experiment if the non-
optimality of the experimental geometry is taken into
account.

Figure 3 Spectra of the THz emission. Spectra of the THz emission
from the cruciform SiC mesa-structure at several bias voltages. T ≈ 7
K. The spectra werre corrected for the spectral response of the
measurement system, normalized to the emission maximum, and
vertically shifted for clarity. The scaling factors are shown in the graph.
The figure insert demonstrates the dependencies of the THz emission
intensity and the voltage drop on the current through the structure.

In Figure 3, a set of THz electroluminescence spectra
measured at different amplitudes of the bias voltage are
demonstrated. It is seen that the THz emission spectrum
consists practically of a single line, the maximum of which
evidently shifts to higher frequencies with increases in the
bias voltage. The shift in the emission maximum is in the
order of 1.5 meV as the bias is varied from 200 to 255
V. The spectrally integrated THz emission power is about
26 μW for the amplitude of the bias voltage of 255 V (see
Figure 3).
As seen from Figure 4, the shift of the THz emission

peak versus the bias voltage can be well approximated by
linear law with a gradient of ≈ 32 μeV/V. It is impor-
tant to note that the FWHM of the emission line is almost
constant and equal to≈2.9 meV (0.7 THz) as the bias volt-
age varies from 200 to ≈240 V (Figure 3). The shape of
the emission spectrum at high bias voltages (255 V and
higher) is caused by the superposition of two emission
bands. The first of them pertains to the above mentioned
series of Bloch emissions at about 6 to 7 meV. The max-
imum of the second emission band is at about 13 meV.
The manifestation of this band can be seen on spectral
line at 255 V voltages. We tentatively attribute this band
at ≈13 meV to the optical transition of electrons over the
next Wannier-Stark ladder state in the high-field-biased
NSL of SiC. We have to note that a more detailed theo-
retical analysis is required for precise interpretation of the
experimental findings. At this moment, it is important to
underline that similar spectra have been observed for 4H-
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Figure 4 Dependencies of the peak position on the bias voltage.
Dependences of the peak position of the THz emission line and the
emission line width on the bias voltage. The solid line corresponds to
a linear fit of the experimental emission maximum (Emax) versus bias
voltage (V) with a gradient of ≈32 μeV/V. The dashed line is a guide
for the eye.

and 8H-SiC NSL structures, and its spectral features cor-
relate with aforementioned miniband widths and periods
of NSL in 4H-, 6H-, and 8H-SiC.
The experimental data allow the observed THz electro-

luminescence to be attributed to spontaneous radiation
resulting from electron Bloch oscillations in a SiC natu-
ral superlattice. Using Equation 1 and the fact of the linear
dependence of the emission peak position on the bias volt-
age for the 6H-SiC structures with NSL, the electric field
strength F required for the BO can be estimated. The esti-
mations give F in the order of 8.5 × 104 V/cm (at 200 V),
which is slightly less than the magnitude of Ft for the
BO regime obtained from high-field transport measure-
ment data at 300 K on 6H-SiC (see above). However, the
agreement between the electric fields is quite reasonable
if an increase of the electron scattering time at 7 K com-
pared to its value at 300 K and a corresponding decrease
of the threshold field of the BO regime are taken into
account. The value of the electric field F implies that only
a small part (less than 10%) of the bias voltage drops on the
base of the structure. The main voltage drops are on the
top n+ layer for supporting of the impurity breakdown,
on the substrate, and also partly on the contact regions.
Nevertheless, the voltage drop on the n− layer (and hence
the electric field F) is proportional to the total bias volt-
age, and this causes the observed linear dependence of the
emission peak on the bias (Figure 4). It is necessary to add
that the experimental geometry used (Figure 2b) was far
from optimal since only a small fraction of the THz emis-
sion, mainly propagating along the substrate plane, can be
collected in this configuration. Therefore, in the case of
an optimal geometry (i.e., observation from the side facet

of the structure or from the top and using a diffraction
grating deposited on the n+ layer), the expected external
quantum yield of the THz emission should be higher by
some times.
It necessary to point out that Equation 5 also describes

the I-V characteristic of the active region of the structure
in a regime when the Wannier-Stark ladder states are well
formed, and the electron transport is controlled by nonra-
diative transitions of electrons between theWannier-Stark
levels. In this case, the I-V characteristic should obey the
I ∝ F5/2 dependence and not have a region of NDC. The
sharp increase of the current (see Figure 1) through the
structure under the test excludes the existence of high field
domains in the structure in the region of the temperatures
and electric fields used in our experiment.
We have measured the polarization properties of the

THz emission on specially designed n+ − n− − n+ struc-
tures allowing for the emission observation from a side
facet. It was found that the emission is linearly polarized
along the c-crystal axis (along the electric field), and the
polarization degree attains 50% at least.

Conclusions
The previous results on the observation of Wannier-Stark
quantization of electrons in silicon carbide NSLs obtained
from transport experiments have given a hope of obtain-
ing THz emission in this system. The new experimental
data serve as evidence of the existence of steady-state
THz radiation induced by Bloch oscillations. The inten-
sive THz emission in the spectral range 1.5 to 2 THz
has been found out. The previous papers [13,14,16-18]
reported only three to four Bloch oscillation cycles, which
were observed using ultrashort laser pulse excitations
in different artificial superlattices, where the oscillations
were damped after a few picoseconds. The properties
of a NSL in SiC crystals allow study-state Bloch oscilla-
tions to be achieved under purely electrical excitation. In
our opinion, the key factors enabling the achievement of
the steady-state Bloch oscillations are the absence of het-
erointerfaces in SiC NSL and the possibility of electron
transport along the sufficiently broad first miniband.
To summarize, THz emission due to electron Bloch

oscillations in the steady-state regime has been observed
for the first time. The experiments were performed on
SiC structures with natural superlattice under electrical
pumping. In combination with earlier reported high-field
transport data [17,18,22-24] demonstrating the evolution
of the fundamental stages of WSL in SiC natural super-
lattices, the presented results constitute substantial proof
of the pronounced Wannier-Stark localization effect in
solid-state objects. It is necessary to add that SiC with nat-
ural superlattices opens new possibilities for perspective
research in the area of high-field transport phenomena.
The discovered intensive THz electroluminescence with
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a variable frequency can find practical applications for
electrically tunable THz emitters. The considerable varia-
tion of the emission frequency from 0.3 to 3 THz can be
attained through the choice of SiC polytype with appro-
priate parameters for the superlattice: the highest emis-
sion frequency can be achieved with 4H-SiC, but for the
lowest emission frequency, any polytype can be chosen
from the row of 15R-SiC, 21R-SiC, 27R-SiC, 33R-SiC, and
so on.
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Direct measurement of the spatial displacement of Bloch-oscillating
electrons in semiconductor superlattices. Phys Rev Lett 1997,
79:301–304.

11. Waschke C, Roskos HG, Schwedler R, Leo K, Kurz H, Köhler K: Coherent
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