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GaAs nanowires on Si substrate
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Abstract

We attempted to control the incorporation of twin boundaries in self-catalyzed GaAs nanowires (NWs).
Self-catalyzed GaAs NWs were grown on a Si substrate under various arsenic pressures using molecular beam
epitaxy and the vapor-liquid-solid method. When the arsenic flux is low, wurtzite structures are dominant in the
GaAs NWs. On the other hand, zinc blende structures become dominant as the arsenic flux rises. We discussed this
phenomenon on the basis of thermodynamics and examined the probability of twin-boundary formation in detail.
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Background
III-V compound semiconductor nanowires (NWs) have
been attracting significant attention as fundamental
structures of novel optical and electronic devices. Es-
pecially, vapor-liquid-solid (VLS) NWs grown on Si
substrates have been investigated for optoelectronic
integrated circuits [1,2].
Previously, we succeeded in growing self-catalyzed

GaAs NWs on Si substrates using molecular beam epi-
taxy (MBE)-VLS method which is a combination of
MBE and VLS method [3]. However, twin boundaries
formed in the NWs during growth. The occurrence of
twin boundaries is controlled by various methods such
as control of supersaturation, growth temperature, and
diameter [4-8]. To control the twin boundaries, we fo-
cused on the pressure of arsenic because self-catalyzed
GaAs NW growth was nearly independent of Ga pres-
sure, and arsenic flux plays an important role in the
growth mechanism [3]. In addition, arsenic solubility in
Ga solution is very low [9]. This means that the degree
of supersaturation depends on arsenic pressure only.
Methods
Self-catalyzed GaAs NWs were grown on a (111)Si sub-
strate by MBE-VLS method. The growth temperature
was 580°C. When the arsenic flux varied from 5.0×10−6
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to 1.9×10 Torr, the diameter and the length of the
obtained GaAs NWs varied from 90 to 30 nm and 0.5 to
3.5 μm, respectively. We have previously discussed the
tendency of the diameter and length to depend on the
arsenic flux [3]. The obtained NWs were observed by
transmission electron microscopy (TEM).

Results and discussion
TEM images of GaAs NWs are shown in Figure 1. In
the case of low arsenic flux (5.0 × 10−6 Torr), wurtzite
(WZ) structures are dominant as shown in Figure 1a.
On the other hand, when the arsenic flux is high,
Figure 1c shows that segments between the twin bound-
aries become large, and zinc blende (ZB) structures are
dominant. The segment size follows the time between
successive twin-crystal nucleation events. Furthermore,
distribution of the segment sizes is exponential from a
stochastic point of view [10].
Figure 2 shows the distribution histogram of the seg-

ment sizes obtained from Figure 1. We assume a segment
size of x and fitted the histogram with an exponential
curve of the form exp (−x/a) to estimate the expectation
value of segment α. The estimated expectation values were
1.1 and 6.5 monolayers at arsenic fluxes of 7.0 × 10−6 and
1.9 × 10−5 Torr, respectively. The reciprocal of the expect-
ation value α−1 is equivalent to the probability of occur-
rence of twin-crystal nucleation. The probabilities were
approximately 90% (7.0 × 10−6 Torr) and 15% (1.9 × 10−5

Torr). The dependence of the probability on the arsenic
flux is in good agreement with [11] and [12].
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Figure 1 TEM images of NWs grown under various arsenic fluxes. (a) 5.0 × 10−6, (b) 7.0 × 10−6, and (c) 1.9 × 10−5 Torr.
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To understand these phenomena, we calculate the de-
gree of supersaturation and estimate the probability of
twin-boundary formation, following the procedure pre-
sented by Glas [13]. The degree of supersaturation Δμ is
as follows:

Δμ ¼ μLGa þ μLAs � 2μGaAs ð1Þ
where μGaAs is the half chemical potential of GaAs crys-
tal nucleation; μGa

L and μAs
L are the chemical potentials of
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Figure 2 Histogram and distribution of segment size obtained
from Figure 1. Arsenic fluxes are (a) 7.0 × 10−6 and (b) 1.9 × 10
−5 Torr. Solid lines are exponential fitting curves.
liquid gallium and liquid arsenic, respectively. We as-
sume that the arsenic adatom was liquid arsenic existing
on the gallium droplet. However, μGa

L and μAs
L include an

interaction between gallium and arsenic in pure gallium
and arsenic chemical potentials μGa

pL and μAs
pL, respect-

ively. Therefore, μX
L (X = Ga or As) is given by

μLX ¼ μpLX þ RT ln aLX
� � ð2Þ

where R is the gas constant, T is the growth
temperature, and a L

X is the activity of X in the liquid
phase. At T0 = 298.15 K, when we adopt an enthalpy per
mol in the X, the solid phase of hX,0

pS , the degree of super-
saturation Δμ is given by

Δμ ¼ RT ln aLGa
� �þ RT ln aLAs

� �þ μLGa � hpSGa;0
� �

þ μpLAs�hpsAs;0

� �
�2 μGaAs � 0:5hpSGa;0 � 0:5hpSAs;0

� �
:

All terms except the enthalpies depend on the growth
temperature. The third, fourth, and fifth terms are the
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differences between the chemical potential and enthalpy
of the pure gallium droplet, arsenic droplet, and GaAs
crystal. Their values are tabulated in the paper of Ansara
et al. [14]. The first and second terms are concerned
with interactions in the alloy. They are denoted by the
atomic concentration cX and the interaction parameter
for gallium and arsenic ωGa,As as follows:

RT ln aLGa Asð Þ
� �

¼ RT ln cGa Asð Þ
� �

þc2As Gað ÞωGa;As

¼ RT ln cGa Asð Þ
� �

þ
c2As Gað ÞVGaVAs

cGaVGa þ cAsVAs

� δGa � δAsð Þ2 � 1:256� 105 χGa � χAs
� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VGaVAs
p

" #

ð3Þ

where VGa(As), χGa(As), and δGa(As) are the molar volume
in the liquid phase, Pauling electronegativity, and Hil-
debrand solubility parameter, respectively. From these
equations, we can obtain the relational expression for
the supersaturation dependence on growth temperature
and arsenic concentration in the gallium droplet.
Figure 3 shows the supersaturation as a function of the

arsenic concentration in the gallium droplet at 580°C. In
this calculation, the supersaturation per atom Δμ/NA,
where NA is Avogadro's number, is adopted. In Figure 3,
the equilibrium arsenic concentration is approximately
0.06% at Δμ/NA = 0. This value is in fair agreement with
the arsenic concentration of approximately 0.1% in the
gallium droplet at 580°C [9]. Therefore, when the arsenic
concentration is positive because of an oversupply of
arsenic atoms greater than 0.06%, GaAs VLS growth
may occur.
From supersaturation Δμ/NA, we can obtain the

probability of twin-boundary formation. When arsenic
adatoms on the gallium droplet surface diffuse to the
three-phase boundary of vapor, liquid, and solid phases,
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Figure 3 Supersaturation as a function of arsenic concentration
in gallium droplet at 580°C.
we assumed that the GaAs crystal nucleus would be
formed into a rhombus shape with side length r at the
vertex of the nanowire top surface. Figure 4 shows the
growth model. When the ZB and WZ structures form,
the amount of Gibbs free energy change in this growth
system is given by

ΔGZB WZð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r2hΔμ

p
2Ω NA

þ 2rh γSL;ZB WZð Þ þ ζγSV;ZB WZð Þ � γLV sinβ
n o

þ
ffiffiffiffiffiffiffi
3r2

p

2
γSN ð4Þ

where Ω is the solid volume of the Ga-As pair (4.51 ×
10−29 m3), h is the height of crystal nucleus, β is the
contact angle of the droplet, γLV (γSN) is the interface en-
ergy between the droplet and the vapor phase (between
the crystal nucleus and the NW top surface), and γSL,ZB
(WZ) and γSV,ZB(WZ) are the interface energies of the GaAs
ZB (WZ) crystal nucleus top and side surfaces. Obviously,
h is the (111) GaAs lattice spacing, which is 0.32639 nm.
γSV,ZB and γSV,WZ are the surface energies of (1-10)GaAs
and (11-20)GaAs, which are 0.62 and 0.54 J/m2, respect-
ively [15]. The interface energy γLV depends on
temperature, and we use the following relation: γLV = 0.708
− 0.66× 10−4 × (T− 303) (J/m2) [16]. If the crystal nucleus
is ZB, γSN = 0. On the other hand, in the case of the WZ
crystal nucleus, γSN is 0.023 (J/m2), which is half of the
GaAs stacking fault energy [17]. We assumed that the
contact angle β is 45° [18]. Since the NW side surface has
a certain asperity, we adopted the parameter ζ (0 < ζ < 1).
nucleus

nanowire

Figure 4 Growth model adopted in the calculation.



Figure 5 Relation between the probability of the twin-crystal
nucleus and arsenic concentration at 580°C (ζ = 0.8).
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Therefore, the maximum ΔGZB(WZ) * and the critical nu-
cleus of Equation 4 for r are obtained as follows:

ΔG�
ZB WZð Þ ¼

2h2 γSL;ZB WZð Þ þ ζγSV;ZB WZð Þ � γLV sinβ
n o2

ffiffiffi
3

p hΔμ
ΩNA

γSN

� �

r�ZB WZð Þ ¼
2h γSL;ZB WZð Þ þ ζγSV;ZB WZð Þ � γLV sinβ
n o

ffiffiffi
3

p hΔμ
ΩNA

� γSN

� �
ð5Þ

At steady state, it is known that the probability of crys-
tal nucleation JZB(WZ) is proportional to the SZB(WZ) re-
gion, where a crystal nucleus can form, and Zeldovich
factor ZZB(WZ) [19]. The relation is given by

JZB WZð Þ∝ZZB WZð ÞSZB WZð Þ exp �
ΔG�

ZB WZð Þ
kT

 !
ð6Þ

where k is the Boltzmann constant, SZB WZð Þ ¼

3
ffiffiffi
3

p
r�ZB WZð Þ
n o2

, and the Zeldovich factor is

ZZB WZð Þ ¼
ffiffiffi
3

p hΔμ
ΩNA

� γSN

� �
=2πkT

	 
1=2

Therefore, the probability of twin-crystal nucleation P is

P ¼ JWZ

JZB þ JWZ

¼
ZWZSWZ exp � ΔG�

WZ
kT

� �
ZZBSZB exp � ΔG�

ZB
kT

� �
þ ZWZSWZ exp � ΔG�

WZ
kT

� �
ð7Þ

This equation indicates that the probability depends
on the growth temperature and arsenic concentration.
When we assume that ζ is 0.8 at 580°C, the relation be-
tween the probability P and arsenic concentration cAs is
shown in Figure 5. As the droplet arsenic concentration
increases with increasing arsenic flux, the probability of
twin-crystal nucleation decreases. This phenomenon
agrees with the experimental results.
By using the probability of twin-crystal nucleation in

Figure 2, we can calculate the arsenic concentration and
supersaturation per atom. When the arsenic fluxes are
7.0 × 10−6 and 1.9 × 10−5 Torr, the arsenic concentra-
tions are 0.11% and 0.38%, and the supersaturations per
atom are 53 and 143 meV, respectively. These supersatur-
ation values are smaller than those of Au-catalyzed GaAs
NWs (230 to 1,570 meV) [20]. This difference might be
due to the difference in the side facet surface. Glas et al.
adopted the {111} and {1-100} facets in the ZB and WZ
structures in their calculations, respectively. In addition,
there might be a difference in the diffusion length be-
tween gold and gallium droplets. From the obtained ar-
senic concentration, we estimate the critical nucleus.
When the arsenic fluxes are 7.0 × 10−6 and 1.9 × 10−5

Torr, the critical nuclei of ZB (WZ) are 1.1 (0.3) and 0.4
(0.1) nm, respectively. This means that the increase of
arsenic flux decreases the critical nucleus and increases
the growth rate. In the case of high arsenic flux, the size
difference between critical ZB and WZ nuclei is small
compared with the case of low arsenic flux. This means
that the ZB structure appears easily as the arsenic flux
increases. Therefore, we could improve the comprehen-
sion of the growth mechanism in the self-catalyzed GaAs
NWs. This comprehension might support a techno-
logical feasibility of a novel device like twin-plane 1D
superlattices [21].

Conclusions
Self-catalyzed GaAs NWs were grown on a (111)Si sub-
strate by MBE-VLS method under various arsenic fluxes.
From the TEM observations, we found that the segment
size between the twin boundaries depends on the arsenic
flux. In order to understand this phenomenon, we
attempted to calculate the degree of supersaturation and
estimate the probability of twin-boundary formation.
When the supersaturation increased with increasing ar-
senic flux, the size difference between the critical ZB
and WZ nuclei decreased. As a result, the ZB structures
were easier to obtain as the arsenic flux increased. This
qualitatively explained the experimental results and the
high probability of the incorporation of twin boundaries.
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