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Abstract

In this paper, the formation of Ga droplets on photo-lithographically patterned GaAs (100) and the control of the
size and density of Ga droplets by droplet epitaxy using molecular beam epitaxy are demonstrated. In extension of
our previous result from the journal Physical Status Solidi A, volume 209 in 2012, the sharp contrast of the size and
density of Ga droplets is clearly observed by high-resolution scanning electron microscope, atomic force
microscope, and energy dispersive X-ray spectrometry. Also, additional monolayer (ML) coverage is added to
strength the result. The density of droplets is an order of magnitude higher on the trench area (etched area), while
the size of droplets is much larger on the strip top area (un-etched area). A systematic variation of ML coverage
results in an establishment of the control of size and density of Ga droplets. The cross-sectional line profile analysis
and root mean square roughness analysis show that the trench area (etched area) is approximately six times
rougher. The atomic surface roughness is suggested to be the main cause of the sharp contrast of the size and
density of Ga droplets and is discussed in terms of surface diffusion.

Background

In the last two decades, a number of semiconductor
quantum and nanostructures (QNSs) by the strain-
driven self-assembly based on Stranski-Krastanow (S-K)
growth [1] have been demonstrated in the field of epi-
taxial growth using molecular beam epitaxy (MBE). As a
result, various device applications have been demon-
strated such as lasers, detectors, sensors, photovoltaic
cells, light-emitting diodes, and solid-state quantum
computation [2-7]. Meanwhile, droplet epitaxy (D-E)
proposed by Koguchi et al. in 1991 [8] has been rela-
tively recently gaining increased interests due to its
advantages over the conventional S-K growth approach
for the fabrication of low-dimensional epitaxial semicon-
ductor QNSs [9-23]. While the strain induced by the lat-
tice mismatch is required in the S-K approach, it is not
essential in the D-E approach for the fabrication of epi-
taxial QNSs. As a result, the selection of material system
for QNSs by D-E approach is highly elastic and thus, a
variety of unseen configurations of epitaxial QNSs have
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been demonstrated by D-E approach [9-23]. In addition,
not only D-E approach can be used for lattice matched
systems but also can be applied in the lattice mis-
matched systems. Quantum dots (QDs) and quantum
rings are the most commonly studied epitaxial QNSs
[9-14]. QD molecules [15-19], low-density QDs [20],
ensembles of quantum ring geometry and droplet [21],
and various nanostructure complexes [22,23] have been
demonstrated by the D-E approach. In addition, nano-
hole drilling and local etching effect [24-26], selective
etching using droplet as a mask [27,28], various config-
urations of In nanocrystals [29,30], running droplets
[31-33], and Ga-triggered oxide desorption [34,35] are
only a few examples of D-E applications.

The fabrication of epitaxial QNSs is inherently
dependent on the size, shape, and density of initial liquid
phase metal droplets (MDs) and consequently, the con-
trol of the density and size of MDs becomes an essential
research focus. The control of droplets on planar sub-
strates has been somewhat widely studied [9-23,36,37];
however, the fabrication of MDs on patterned surfaces
lacks its investigation. This very naturally puts the con-
trol of MDs on patterned substrate as an attractive and
essential research topic. In this paper, therefore, in
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extension of our previous results [38,39], we extend the
results of the sharp contrast of the size and density of
Ga MDs on photo-lithographically patterned GaAs (100)
by D-E approach using MBE. As evidenced by 3-D
atomic force microscope (AFM) and high-resolution
scanning electron microscope (SEM), the sharp contrast
of the size and density of Ga MDs is clearly observed,
showing an order magnitude higher density on the
trench area (the etched area). Conversely, the size is
much larger on strip top area (the un-etched area). By
systematically varying the monolayer (ML) coverage, we
demonstrate the control of size and density of Ga MDs
on patterned GaAs (100) surface. The atomic surface
roughness is around six times higher on the trench area
(etched area) based on the cross-sectional line profile
and root mean square (RMS) roughness analysis. The
sharp contrast of size and density of Ga MDs is dis-
cussed in terms of surface adatom diffusion.

Methods

Experimental details

The strip patterns used in this experiment were fabri-
cated using conventional photolithography technique
and wet chemical etching. As clearly shown in Figure 1
(a), the strip patterns were fabricated on GaAs (100)
along [01-1] and the width of strips are approximately
220 pm and of the trenches are approximately 70 pm.

Figure 1 SEM images of interface between trench (patterned)
and strip top (un-patterned) areas of GaAs (100). Strip patterns
were etched along [01-1] @). The height of strip is approximately 500
nm as clearly seen in the enlarged side-view SEM images in (b) and (c).
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The height of the strip pattern is approximately 500 nm
as clearly seen in Figure 1 (b, c), which are cutouts from
the Figure 1 (a). The ‘strip top’ area was covered by
photo-resist during the etching using a H3PO4H,0,:
H,O (3:1:100) solution while the ‘trench’ area was
exposed. For the fabrication of Ga MDs on strip-
patterned GaAs (100) surfaces, a Riber-32P solid-source
MBE was used. To observe the substrate temperature
(Tyup) and growth rate (Ga) of surface reconstructions
and growth procedures, an in-situ reflection high-energy
electron diffraction was utilized. For a consistent set of
experiments, growth procedures were kept similarly
between samples. After mounting the samples on molyb-
denum sample holder block (moly-block), it was
degassed at the Ty, of 350°C for an hour. Then the
moly-block was introduced in a main growth chamber
through ultra-high vacuum transfer modules. The Ty,
was then raised to 600°C by 50°C/min. Subsequently, by
annealing substrates at the T, of 600°C for 10 min the
native Ga surface oxide (Ga;O3) was removed. From our
previous experiments on buffer growth on shallow pat-
terned substrates, the buffer growth destroyed the pat-
tern shapes (trenches were filled and sidewalls were
smoothened) due to high anisotropic surface diffusion
during the buffer growth [40,41]. Thus, a buffer layer
was avoided in this experiment. After annealing the T,
was lowered to 400°C for the fabrication of Ga MDs. For
the consistency of the results and minimization of the
arsenic monomer background, the chamber background
pressure was kept below 4 x 10~° Torr for each growth.
The arsenic monomer background pressure was below
107*? Torr under this pressure. Now based on an
equivalent amount of GaAs growth with As, flux, 20, 10,
and 5 ML of Ga were deposited on strip-patterned GaAs
(100) surfaces at the Ty, at 400°C to form metal Ga dro-
plets. The G,y used was 0.5 ML/s. Then, the Ty, was
quenched down right after the fabrication in order to
minimize Ostwald ripening [42,43]. An SEM under vac-
uum and AFM in air was used for the characterization
of surface morphology [44-46]. Energy dispersive X-ray
spectrometry (EDS) under vacuum was used for the
chemical composition analysis and NanoScope (Bruker
Corporation, Billerica, MA, USA), WSXM Nanotec
Electronica S.L, Tres Cantos (Madrid) SPAIN [47] and
Origin software (Origin Software Inc., San Clemente,
CA, USA) were used for the analysis and processing of
the acquired data.

Results and discussion

Figure 2 shows the sharp contrast of the density and size
of Ga MDs at the interface between trench and strip top
areas by the SEM images. The Ga MDs were fabricated
with 20 ML at the surface temperature (T,,) of 400°C.
Figure 2 (b) is a cutout from the Figure 2 (a) and
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Figure 2 SEM images of the interface between trench (patterned) and strip top (un-patterned) areas of GaAs (100). SEM images of the
interface between the trench (patterned) and strip top (un-patterned) areas of GaAs (100) showing the sharp contrast of size and density of Ga
metal droplets. Ga droplets were fabricated with the deposition of 20 ML at the Ty, of 400°C.
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similarly, Figure 2 (c) is from Figure 2 (b). With an
enlarged view of Figure 2 (c) at the interface between
etched and un-etched areas, the sharp contrast in size
and density is clearly observed between the strip top and
trench areas. In Figure 2, (d) and (f) are further enlarged
images of trench areas and in the same way in Figure 2,
(e) and (g) are from strip top areas. By comparing the
strip top and trench areas, the density of Ga MDs is
relatively higher and the size is much smaller on the
trench area. Meanwhile, the density of MDs is much
lower and the size is much larger on the strip top
area. As the image size of Figure 2 (f) is almost twice as
large as Figure 2 (g), the size of MDs on strip top area in
Figure 2 (g) is indeed much larger. Figure 3 shows EDS
analysis of Ga MD samples with 20 ML deposition on
both strip top area in Figure 3a and trench area in
Figure 3b. The EDS analysis confirmed the presence of
elemental signal of Ga and As and the higher Ga peaks

as expected. The SEM insets and EDS mappings show
good matching and the MDs are indeed consisted of Ga
as clearly shown in Figure 3 (a-2) and (b-2).

A systematic variation of Ga ML deposition on strip-
patterned GaAs (100) is demonstrated and shown in
Figures 4 and 5; the summary plots of density, diameter,
and height are shown in Figure 6. Figure 4 shows 2-D
flat AFM views of Ga MD formation on the strip and
trench areas with 20 ML in Figure 4a,b and with 10 ML
in Figure 4c,d and 5 ML in Figure 4ef. For the side-view
perspective, Figure 5 shows the 3-D side AFM views of
Ga MDs similarly with 20, 10, and 5 ML. With 5-ML
deposition, the average density was 2.8 x 10° cm™> on
trench area, while it was 3.8 x 10% cm™ on the strip
area. There was about an order of magnitude difference
between the strip and trench areas. With an increase of
ML to 10, the density was increased to 4.2 x 10'% cm™2
on the trench and to 4.9 x 10° cm™2 on strip. Also, there
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Figure 3 EDS of Ga droplet samples with 20 ML deposition. EDS of Ga droplet samples with 20 ML deposition on strip top area in (a) and
trench area in (b). Insets show the SEM images (a-1) and (b-1) and the corresponding EDS mappings (a-2) and 3(b-2).

was about an order of difference between the two
areas in the average density of Ga MDs. With a fur-
ther increase of ML deposition to 20, the average
density was slightly decreased to 3.68 x 10'® cm™
on the trench area and to 3.9 x 10° cm™> on strip
area. In previous experiments, an increase of the
average MD density was observed when ML depos-
ition was increased [36,37]. Also, slightly reduced
density was observed depending on the growth con-
ditions, i.e., duration, G,,, and Ty, Here the T,
was fixed at 400°C and the G, was also fixed at
0.5 ML/s for all samples. Thus, the growth duration
was increased with increased deposition amount.
With 5-ML deposition, the MDs begun to nucleate,
and the density and size were increased when ML
deposition was increased to 10, reaching the peak
density. With a further increase of ML to 20, which
is equivalent to the duration of 40 s in this experi-
ment, the MDs could have sufficient time to diffuse

and merge. Once the merging of MDs occurs, bigger
MDs tend to absorb the smaller ones and this
process can result in a reduced density, which is
known as Ostwald-ripening [42,43]. To minimize
Ostwald-ripening, the duration has to be reduced
but this requires a variation of the growth parameter,
Grate in this case. For the diameters of MDs, the
average diameters were larger on strip top areas as
clearly seen in Figure 6b as well as in the AFM
images of Figures 4 and 5. Both the strip and trench
pattern show increased average diameters when ML
was increased. At 5 ML on strip, the diameter was
40 nm and increased to 63 nm with 10 ML and to
105 nm with 20 ML. On the trench areas, the aver-
age diameters of Ga MDs were 38.2 nm with 5 ML,
60 nm with 10 ML, and 86 nm with 20 ML. As the
ML deposition was increased, the gap between the
strip top and trench areas became larger perhaps
due to Ostwald-ripening as discussed. The increased
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Figure 4 3-D top-view atomic force microscope (AFM) images. 3-D top-view atomic force microscope (AFM) images show the surface
morphologies of Ga metal droplets on GaAs (100) with 20, 10, and 5-ML depositions at the Ty, of 400°C. AFM images are 2(x) x 2(y) umz, and
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diameter of Ga MDs is a common trend with in-
crease in deposition amount [36,37]. Now, for the
average height of Ga MDs as seen in Figure 6c, on
strip top areas, it showed a constant increase. An
increased height of MDs is also an acceptable result
when ML deposition is increased in conditions of
atomically smooth surfaces. However, the height of
MDs on trench areas kept almost the same regard-
less of the ML variation in this experiment. This
indicates that the amount of deposition was dedi-
cated either to the expansion of diameter or to the
increase of density if there was no intermixing or
desorption involved in the process [36,37]. Consider-
ing the Ty, of MD fabrication, we could exclude the
intermixing and desorption to some degree. The
diameter of Ga MDs in Figure 6b does not seem to
be unusual, indicating the blue line stays below the
black. The density of MDs on the trench area (blue
line in Figure 6a) shows that the increased depos-
ition was mostly used for the increase of density; the

blue line stays above black. Also, this behavior can
indicate that the surface is not atomically smooth on
the trench area.

Figure 7 shows the cross-sectional line profiles
(CLPs) of bare GaAs (100) on strip area in Figure 7a
and trench area in Figure 7b before Ga MD fabrica-
tion. Figure 7c is the CLP on the strip area and like-
wise, Figure 7d is on trench area shown as white
lines in Figure 7a, b. The lengths of CLPs are 5 pm
(x-axes on the graphs), and height was set at 10 nm
for a straightforward comparison. As clearly seen in
CLPs, the trench area is much rougher, confirming
the previous speculation based on MD size analyses.
The strip area showed an RMS roughness of 0.39,
while the trench area was 2.26 which indicates that
the trench area is approximately 5.8 times rougher.
This large difference on the atomic surface rough-
ness could be the major cause for the sharp contrast
on the size and density of Ga MDs. A smoother sur-
face can indicate a longer diffusion length and vice
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Figure 5 3-D side-view AFM images of the variation of Ga metal droplets; 20 in (a) and (b), 10 in (c) and (d), and 5-ML depositions in
(e) and (f) at the T, of 400°C. Figures correspond to the images in Figure 4: Figures 4a-5a, etc.
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versa. When the diffusion length is longer, we gener-
ally observe lower density and larger size of MDs,
for example, Ga and In MDs [36,37]. We can easily
observe the effect of diffusion length when T, is
increased and when other conditions were kept the
same, as a higher T, indicates a longer diffusion
length. For example, the MDs which are fabricated
at 500°C as compared to 400°C should have larger
dimensions and thus lower density and vice versa. In
this experiment, the density is nearly an order of
magnitude higher on strip areas almost constantly
for 5, 10, and 20 ML. Also, the average diameters
are larger on strip patterns as the surface is much
smoother.

Conclusions

In conclusion, the sharp contrast of the size and
density of Ga MDs on photo-lithographically pat-
terned GaAs (100) was demonstrated and clearly
observed by SEM and AFM. The EDS analysis con-
firmed that the MDs were consisted of Ga atoms.
Also a systematic control of size and density was
demonstrated by ML variation, and the behavior was
discussed with atomic surface roughness, diffusion
length, and surface diffusion. Ga MDs were fabri-
cated by solid-source MBE, and the density of MDs
was generally higher on the trench areas, and the
size was larger on strip tops due to the approxi-
mately 5.8 x smoother surface morphology.
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Figure 6 Plots of density, diameter and height of Ga metal droplets with variation of ML deposition. Data from the strip top and trench
are plotted together per each deposition for a straightforward comparison.
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Figure 7 AFM images of GaAs (100) on strip top and trench area before fabrication of Ga MDs. AFM images of GaAs (100) on (a) strip top
area and (b) trench area before the fabrication of Ga MDs. () and (d) show the cross-sectional line profiles (CLPs) of two areas. White lines in (a)
and (b) are the corresponding locations of CLPs shown in (c) and (d).
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