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Abstract

To study the influence of localized porous silicon regions on radiofrequency performances of passive devices,
inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass
substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on
the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are
presented. A first comparison is done between the performances of inductors integrated on same-thickness
localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of
localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly
reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising

Fluoropolymer, Fluorocarbon

for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate.
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Background

The tremendous growth of mobile and wireless applica-
tions during the past decade has accelerated the devel-
opment of radiofrequency (RF) technologies. More and
more radio frequency-integrated circuits (RFICs) have
been integrated on a single chip, with the advantage of
high density of the package, low cost and small volume.
To integrate both active and passive devices and to re-
duce substrate losses, RFIC integration could be made
on substrates such as silicon on glass [1], silicon on sap-
phire or high-resistivity silicon (HR Si) [2,3]. However,
CMOS processes generally require low-resistivity silicon
substrates, which are lossy and responsible for the de-
terioration of RF performances [3].

An alternative solution is the use of silicon/porous sili-
con hybrid substrates. Porous silicon (PS) is known for
its insulating properties. Indeed, PS electrical conductiv-
ity (ops) increases with frequency but remains very low
even in the range of a few gigahertz [4]. Ben Chorin
and co-workers measured a conductivity modification
from 1078 to 107°/Q cm from direct current (DC) signal
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to 10 kHz [5]. Balagurov and Timoshenko report meso-
porous silicon ¢ of 1077/Q cm in DC [6,7]. Then,
the permittivity of PS (eps) varies between 2 and
11.7 with the porosity according to a Vegard law.
Experimental values reported in the literature have
already confirmed the decreasing behavior of epg
when the porosity increases [8]. The porous silicon
electrical properties allow the reductions of leakage
currents and eddy currents in the high-frequency
field. Numerous authors show interest in this sub-
strate with regard to bulk silicon for inductor perfor-
mances (resonant frequency and quality factor) [9].
In previous work, an increase of 250% of the maximum
quality factor (Q factor) has been calculated between a 100-
pum PS layer and a low-resistivity Si substrate [10]. Integra-
tion of RF devices on localized porous silicon areas has
been addressed by Populaire and Chen [11,12].
Nevertheless, substrate losses with hybrid substrates
are increased with regard to full PS sheet layers since lat-
eral couplings with the highly conductive Si are added at
the edge of PS regions. That is why deep localized PS
layer areas are generally used (>100 pm). Their fabrica-
tion requires the use of a strong, resistant mask in HF-
based electrolytes for long-time anodizations. Resists or
metals different from noble metals have a limited
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resistance in HF-based solutions [13]. Noble metals are
more inert in HF, but charge accumulation at the edges
of the openings could be responsible for local high-
current density and silicon erosion in these areas. The
strong resistance of carbon and silicon carbide layers
have been respectively shown by Djenizian [14] and
Steiner and Wang [13,15]. Oxide/polysilicon bilayers are
also a mask solution [16-18]. However, the common ma-
terial employed to localize PS is a non-stoechiometric
nitrid [15]. The mask removal conditions are also a crit-
ical parameter since they have not deteriorated the fabri-
cated PS surface.

In this work, planar inductors integrated on deep loca-
lized mesoporous silicon regions and other substrates
have been characterized. First, the fabrication processes
are detailed. Secondly, the RF performances of the
inductors are studied by observing the Q factors and res-
onant frequencies. To judge the impact of the localized
PS substrate on RF performances, a comparison is done
with full porous silicon sheet and other common sub-
strates such as silicon and glass.

Methods

Porous silicon localization

The PS localized regions were defined thanks to a
300-nm-thick fluorine-based (FbF) mask reported by
Defforge [19]. It was plasma-deposited at ambient
temperature in an inductive coupled plasma equipment
at 80 W, with C,H, and CHF; as gases precursors.
The deposition rate is 35 nm/min. Then, a 500-nm
plasma-enhanced chemical vapor deposition (PECVD)
oxide was deposited and patterned to be used as a
hard mask. The openings in the FbF were performed
by etching in an O, plasma, with an etching rate of
360 nm/min. Then, the oxide hard mask was etched
by the HF solution during anodization. After the ano-
dization, the FbF was removed with an O, plasma,
without damaging the PS region fabricated.

Anodization settings

Both full PS sheet and localized regions were fabri-
cated by anodization of p*-doped (111) silicon (p =20
mQ cm) in a double-tank electrochemical cell. The
thickness of the Si wafers is 550 um. The electrolyte
used was a HF (50%)/acetic acid/water solution
(4.63:2.14:1.43). A current density of 28 mA/cm?® was
applied, and the corresponding current was calculated
according to the surface (opened or total) anodized.
First, 100 and 200-pm-thick localized regions were
obtained respectively for 123- and 246-min anodiza-
tion durations. The under-mask etching measured for
the 100- and 200-um PS layers are respectively 80 and
160 pum. Secondly, 100- and 200-pm full PS sheet
thicknesses were obtained for 80- and 160-min
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anodizations. The measured average porosity of the
layers is about 50%. At the end of the PS etching
process, the substrates have been annealed at 300°C
under N, for 1 h in order to stabilize the structure.
During the annealing, hydrogen atoms chemisorbed
during the anodization are desorbed, which causes the
lattice contraction of the PS layer [20,21]. This micro-
scopic effect added with macroscopic stresses, such as
porosity gradient in the depth, non-homogeneity of the
depth in the whole wafer and oxidation due to anneal-
ing, is mainly responsible for the wafer warp
(Figure 1).

The warp has been measured on full porous silicon
sheet layers fabricated on 6-in. p-type (20 mQ cm) (111)
silicon bulk. Figure 2 shows the increase of wafer warp
with the PS thickness after a 300C annealing. Generally,
a wafer warp superior to 400 um is responsible for hand-
ling issues of non-homogeneity of photolithography and
difficulties in aligning mask levels. Since the work was
conducted on 25-cm® samples, the warp effect is
reduced and no handling issues have been experienced.
However, one can make the assumption that the PS
localization allows the decrease of warp with regard to
full PS sheet.

Inductor fabrication

Planar inductors were integrated on the PS sub
strates previously described, on glass, on 3-kQ c¢m and
20-mQ cm Si substrates. The surface of the localized
PS region is a rectangle designed under inductor wind-
ing (Figure 3). Due to the isotropy of the etching, the
PS surface is increased by the PS fabrication under the
mask. The ratio between the surface of the inductor
metal coil and the PS region is given in Table 1.

First, a 500-nm oxide layer was deposited by PECVD
on top of the substrate. The inductor stack is made of
two aluminum layers (1 um) deposited at 350C by phys-
ical vapor deposition. The metal layers are separated by
a 500-nm PECVD oxide. Patterns have been defined by
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Figure 1 Schematic view of a wafer warp. The warp is revealing
the curvature of a wafer. It is calculated from a measure of the
maximum deviation from the reference plane (MAX) and the
minimum deviation from the reference plane (MIN). The warp value
is equal to the difference between MAX and MIN.
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average 50% porosity. The annealing was run for 1 h under N, at 300C.
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Figure 2 Evolution of the warp with the PS thickness. Influence of the PS thickness on the warp of 6-in. p-type silicon (0 =20 mQ cm).
Measurements were conducted after the anodization and annealing processes. The surface of the substrate was totally anodized. PS layers had

Figure 3 Planar inductor integrated. (a) Top view of a
W50N25R80 planar inductor. The edge of the PS region is defined
by the dashed line. (b) Tilted cross section of an inductor integrated
on the PS region (SEM picture).

standard photolithography and dry etching (reactive ion
etching).

In this work, 1 to 28 nH inductors with various strip
widths (W), number of turns (N) and internal radius (R)
were fabricated and characterized. The spacing between
adjacent turns (S) and the distance to the surrounding
ground plane (S,) are respectively set to 10 and 50 pm.
For instance, a 5.5-turn inductor with a 30-pm strip width
and an 80-pm internal radius is called W30N55R80.

RF characterization settings

To compare the performances of the inductors integrated
on localized PS with common substrates, S parameters
were measured using a network analyzer between
10 MHz and 20 GHz. The preliminary calibration was
done with the line-reflect-reflect-match method. Then, a
conventional three-step de-embedding procedure (using
thru, open and short patterns) has been applied to extract
the device characteristics from the raw data. To evaluate
the substrate losses, the quality factor (Q;;) derived from
the admittance (Y) matrix when one port is shorted has
been calculated (Equation 1). The quality factor is a
frequency-dependent parameter, and its value results in
energetic electrical losses through the inductor and in the
substrate. Thus, higher the Q;, better the performances
of the inductor are. The inductance L, was also calcu-
lated and is frequency dependent (Equation 2). Generally,
the inductor is used at frequencies below the resonant
frequency (f;), and for the ones, the L value is constant.
The formula given in Equation 2 is correct only if a pi
model is considered (Figure 4). It is an equivalent
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Figure 4 Electrical equivalent circuit of the inductor. Typical ‘pi’
model used as an equivalent circuit of the integrated planar
inductor. G, Ls and R, represent respectively the capacitance,
inductance and resistance of the inductor. C,, is the capacitance of
the oxide. Cy, and Ryp, are the capacitance and resistance of the
substrate.

electrical circuit for both inductor and substrate. Here,
the integrated inductor is considered as a two-port net-
work.
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The results of characterization are presented in three
parts. A first comparison of inductors’ Q factors is done
between the localized PS and full PS sheet substrate.
Then, it is compared to the results obtained with glass
and silicon, which are common substrates used for the
integration of RF circuits. To finish, the influence of

(1)

(2)
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substrate nature on inductors, resonant frequency (f;) is
presented.

Results and discussion

Q factor

First, the Q factors of the inductors integrated on loca-
lized PS and on full PS sheet are compared. Table 1
shows the maximum Q factors (Qn..) obtained with
these substrates for each inductor design. In any cases,
for the same PS thickness, 11% to 46% decreases of the
Q factor values have been measured between full PS
sheet and localized PS. The coverage of the local surface
area by the device area is shown by the surface ratio
value in Table 1. The expected result would be that the
lower the ratio is, the lower is the variation between the
Q factors of localized and full PS sheet. However, this
conclusion cannot be done since surface ratio could be
the same for two different inductor designs. The Q fac-
tor value depends on losses due to the design and sub-
strate. To study properly the effect of the ratio, it will be
more rigorous to design several PS region areas and
make the comparison on the same inductor design. In
this way, losses generated by the design are similar, and
the delta-Q is directly linked to the surface ratio.

The frequency for one Q,.x obtained is called fqmax-
Generally, inductors are used at frequencies closed to
the fomax to improve performances. The results show
that fomax obtained with localized PS are lower than the
ones with full PS sheet (Table 1).

To understand the effect of the localized PS substrate
on the increase of losses, a simplified electric model of
an inductor integrated on this substrate is suggested
(Figure 5). It is based on Huo’s [22] works, which give
several electric models according to substrate resistivity.
For this work, the resistivity of the PS regions has been
measured, studying the variation of the intensity with
voltage. To begin, the spiral inductance is usually repre-
sented by the series branch R, L and Cj. Ly is the spiral

Table 1 Qnax (fomax) Of inductors integrated on localized PS and full PS sheet

Inductor 100-pm PS 200-pm PS
design Surface Localized PS Full PS sheet Surface Localized PS Full PS sheet
ratios Qmax (fomax GH2) Qmax (fomax GH2) ratios m m
W10N55R30 0.12 4.7 (2.6) 7.2 (4.7) 0.07 6.9 (34) 8.7 (54)
W10N55R80 0.13 53(23) 6.3 (3) 0.08 - 78 (3.2)
W30N15R80 0.12 9.1 (4.2) 12.1 (84) 0.07 124 (5.3) 22 (12)
W30N35R130 022 4122 63(3.7) 0.15 41 (19 7.7 (4)
W50N15R78 0.18 94 (3.8) 106 (6.6) 0.11 11 (4.6) 175 (8)
W50N35R30 03 - 6(23) 021 4(1.2) 75(3)
W50N55R175 038 3.11(04) 38 (0.6) 03 - -

Comparison of the Q,.x obtained with several inductors integrated on localized and full PS sheet substrates. PS layers, 100- and 200-um thick, are studied. In each
case, Qmax and fomax are decreased with the PS localization. The surface ratios are the calculated ratios between the surface of the inductor metal coil and the
surface of the PS region (the under-mask etching is included in the PS surface). Qmax, maximum Q factors; fomax frequency for the one Q.



Capelle et al. Nanoscale Research Letters 2012, 7:523 Page 5 of 8

http://www.nanoscalereslett.com/content/7/1/523

! |

I il o
1 > Rs/2 4 y
== = = |
I = Cox = == CE0x

1

1 PS = Cps Region 2

I ppe=0.5 MQ2.cm

I

|

I Region 1

I = Csi Lsi2 =Csi

I O
|| -

, Sip*

| Poc=20mf.cm

Figure 5 Electric model of an inductor integrated on localized PS. Cross-section view of half an inductor (the pad is in the right side).

A simplified electric model has been superposed. The aluminum metal coil and oxide layers are represented respectively in blue and yellow. C,, R
and L, represent the spiral inductance. Co,, Cps and Cg; are respectively the capacitances of oxide, PS and Si. Ry and R, are the resistances, and Ly
is the inductance of the two materials. M is the mutual inductance between the substrate and the inductor winding.

inductance, and R, is the metal series resistance, which
is frequency-dependent according to Eddy current gen-
eration in the coil. C; reflects the capacitance of the
winding and between the metal coil level and the under-
pass. The substrate is represented by Co, Cps, Coy Ry
and Lg. C,, is the oxide capacitance between the wind-
ing and the substrate. C,; and Cg; are respectively the
parallel capacitances of PS and Si. Ry; is the resistance of
the high-conductivity Si. The circulation of currents in
the inductor metal coils generates magnetic field (B).
According to the Lenz’s law, the variation of B with time
induces reverse currents (called Eddy currents) in wind-
ings and on the highly doped silicon region. The Eddy
current flow in the Si region is responsible for a mag-
netic field image generation; Ly is the inductance of the
Si substrate. The magnetic coupling with metal coil is
indicated by a negative mutual inductance M. In
addition, this reverse current attracts the main current
flowing through the metal coil, which is consequently
concentrated on the lower face of the conductor. This
proximity effect adds to the conventional skin effect and

leads to increased losses. Thanks to the resistivity of the
PS region, leakage currents are highly decreased, and it
can be assumed that no Eddy currents are generated in
this area.

In the case of the localized PS substrate, the losses
caused by the Si bulk below the PS layer (Figure 5, Re-
gion 1) are similar to a same-thickness full PS sheet sub-
strate. The hypothesis can be made that additional losses
are generated in the silicon area at the edge of the PS re-
gion (Figure 5, Region 2) with the localized PS. Some lat-
eral magnetic couplings with the inductor and losses in
the pad and conductor pathway may explain the de-
crease of the Qq; value.

In a second part, the Q factors obtained with inductors
integrated on localized PS and other substrates have
been studied. Glass and high-resistivity silicon are com-
monly used for the integration of passive devices for RF
applications and provide high Q factor inductors. The
integration of both active and passive devices is made on
highly doped silicon, but mediocre Q factors are
obtained since electrical losses are high in the substrate.

Table 2 Qnax (fomax) Of inductors integrated on localized PS and other usual substrates

Inductor Qmax (famax) (GHz)

design 3-kQ ¢cm Si 20-mQ cm Si 100-um PS 200-pm PS 100-pm localized PS 200-pm localized PS Glass
W10N55R30 38(26) 1.8 (1) 72 (47) 87 (54) 4.7(26) 69 (34) 83 (5.5)
W10N55R80 1(1.6) 1.5 (0.6) 313) 78 (3.2) 53(23) - 7.8 (3.76)
W30N15R80 9 (5.6) 36 (1.5) 2.1(84) 22 (12) 9.1 4.2 124 (5.3) 3(13)
W30N35R130 7 (1.7) 16 (7.6) 6.3(3.7) 7.7 (4) 4122 4109 8.7 (4.5
W30N55R30 5(9.6) 1.7 (0.3) 5(1.7) 6.6 (2) 43012 45(13) 6.9 (2.15)
W50N15R78 8 (4.3) 341 (1) 106 (6.6) 175 (8) 94 (3.8) 11 (46) 18.7 (7.8)
W50N55R175 24(03) 1.2 (0.1) 8 (0.6) 311(7.0) - 5.7 (09)

Comparison of Q. Obtained with several inductors integrated on localized PS, full PS sheet and common substrates used for radiofrequency applications. Better
Qmax Were obtained with 200-pum localized PS than with highly doped and high-resistivity silicon bulk. PS, porous silicon; Qnax maximum Q factors; fomax
frequency for the one Quay-
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Figure 6 Q factor of an inductor integrated on common and PS substrates. Frequency variation of the Q factor of a W50N15R78 inductor
integrated on 3-kQ cm and 20-mQ cm Si, glass, 100- and 200-um localized PS substrates. Better Q. Were obtained with 200- and 100-um
localized PS than with high-resistivity and highly doped silicon substrates.
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In this study, 550-um-thick silicon substrates with resis-
tivities of 3 kQ c¢cm (HR Si) and 20 mQ cm have been
used. Table 2 and Figure 6 show that better Q.. are
obtained with glass than with localized PS. Actually, the
relative permittivity (approximately 4) and loss tangent of
glass are lower than the PS ones, and substrate losses are
reduced. Nevertheless, better Q..x were obtained with
localized PS than highly doped Si. A maximum improve-
ment of 244% of the Quax value is measured with 200-
um-thick localized PS. Then, with regard to high-
resistivity Si results, better Q. have been obtained with
200-pum-thick localized PS. A maximum increase of 84%
of the Qumax value has been observed when comparing
both substrates. It can be noticed that the HR Si surface
has not been passivated before the oxide deposition, and
a MOS capacitance is present at the interface. It results in
majority carrier accumulations and generation of add-
itional losses at the surface of the silicon. The solution
would be to amorphize the surface by argon implantation

or by the deposition of amorphous materials. It has been
shown that Q factors are improved with the amorphiza-
tion of the interface [23].

Resonant frequency

The study of the resonant frequency (f;) value allows de-
termining the frequency range for which the device
behaves like an inductor. This value is determined by
studying the evolution of the inductance (L;,) value with
the frequency. f; is the frequency for which L, is equal
to 0. The f; of several inductors integrated on the sub-
strates described previously have been measured and are
summarized in Table 3.

The values obtained with localized PS have not been
published since the pi model (Figure 4) used to calculate
the L, values does not seem suitable to represent this
substrate correctly. It can be confirmed by the negative
value of Ry obtained with localized PS. A suitable model

Table 3 Resonant frequencies of inductors integrated on PS and other substrates

Inductor characteristics f, (GHz)

Inductor design L (nH) Glass 3-kQ cm Si 20-mQ cm Si 200-pm full PS sheet 100-um full PS sheet
W10N55R30 53 15.8 153 156 153 -
W50N15R78 1.2 16.7 17 83 17 18.2
W50N35R30 35 6.5 64 4 6.5 7
W50N55R175 21 1.75 1.7 0.7 - 2.1
W10N55R80 102 10 9 2 105 -
W30N35R130 7 14.5 14 511 14.5 -

Resonant frequencies (f,) of inductors integrated on PS and other substrates. Similar f, were obtained with full PS sheet, glass and high-resistivity silicon. f; is
increased with the PS substrate with regard to highly doped silicon. f,, resonant frequency.
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Figure 7 Resonant frequency measured on common and PS substrates. Variation of the inductance value (L;,) with frequency for a
W50N35R30 inductor integrated on various substrates. Except for highly doped silicon substrates, f, between 6 and 7 GHz are obtained.
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has to be developed to represent the hybrid substrate
and extract the correct Lq,.

Concerning other substrates, Table 3 shows the im-
provement of the f, value brought by full porous silicon
sheet with regard to highly doped silicon substrate, also
measured by Billoué [24]. A maximum improvement of
750% has been calculated with the WI1ON55R80 in-
ductor. Thus, the inductor can be used at higher fre-
quencies with the integration on PS. Then, the f;
measured on full PS sheet is equivalent to or higher than
that on glass and HR Si. It can be noticed that the in-
ductance values at low frequency are not changed by the
PS substrate and are similar from one substrate to an-
other (Figure 7). It confirms that for the same design,
the process is reproducible on each substrate.

Conclusions

The interest on silicon/porous silicon hybrid substrate
for the integration of RF circuits has been studied. To
study the influence of hybrid substrate on the perfor-
mances of passive devices, inductors have been inte-
grated on localized PS and were characterized. The
study of the quality factors on localized PS has shown
the substrate losses generated by the neighboring highly
doped silicon region. However, results are promising
since better Q factors were obtained with localized PS
with regard to highly doped silicon and high-resistivity
silicon bulk. Thus, a maximum improvement of 244% of
the Qmax has been obtained with localized PS with re-
gard to highly doped Si bulk. In addition, similar reson-
ant frequencies have been measured with full PS sheet
and glass. Thus, the hybrid substrate is a serious

candidate for the integration of passive and active
devices since it allows increasing the passive device’s
performances with regard to commonly used silicon. In
addition, performances can still be improved by oxidiz-
ing the porous silicon.
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