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Abstract

Open structure ZnO/CdSe core/shell nanoneedle arrays were prepared on a conducting glass (SnO2:F) substrate by
solution deposition and electrochemical techniques. A uniform CdSe shell layer with a grain size of approximately
several tens of nanometers was formed on the surface of ZnO nanoneedle cores after annealing at 400°C for 1.5 h.
Fabricated solar cells based on these nanostructures exhibited a high short-circuit current density of about
10.5 mA/cm2 and an overall power conversion efficiency of 1.07% with solar illumination of 100 mW/cm2. Incident
photo-to-current conversion efficiencies higher than 75% were also obtained.

Keywords: ZnO, CdSe, nanoneedles, solar cells
Background
Since the first report on the dye-sensitized solar cell by
O'Regan and Grätzel in 1991 [1], a great number of
photovoltaic devices based on nanostructures have been
proposed or developed, such as nanostructured dye-
sensitized cells [2,3], extremely thin absorber (ETA) cells
[4], quantum dot cells [5], nanowire array cells [6],
organic/inorganic nanostructured cells [7], and III-VI
quantum ring solar cells [8]. Nanostructured solar cells
have several advantages over conventional bulk and thin
film solar cells: large surface area, high efficiency for light
harvesting, less expensive materials, and low process
cost.
The two most frequently used window materials in

nanostructured solar cells are highly porous nanocrystal-
line TiO2 and highly textured ZnO nanorod arrays.
Porous nanocrystalline TiO2 particles can provide a large
surface area for the absorber material. However, their
slow trap-limited diffusion process and short effective
diffusion length of electrons are big obstacles in making
more efficient cells. ZnO nanowires have higher carrier
concentration and electron mobility which favor the elec-
tron transport to the collection electrode. As the nano-
wires are not in direct contact with each other, the
electrons transport only along the nanowire axis without
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any lateral transport, which will reduce the non-radiative
recombination and carrier scattering loss dramatically.
Solar cells sensitized by organic dye absorbers have
shown impressive results, although their long-term sta-
bility and bandgap controllability need to be improved
further. On the other hand, inorganic narrow bandgap
semiconductors, such as Ag2S [9], In2S3 [10], CdS [11],
CuInS2 [12], and CdSe [13], are also promising candi-
dates as sensitizers for nanostructured solar cells.
It has been postulated that ZnO/CdSe can form a type

II heterojunction which will accelerate the separation of
photoexcited electron–hole pairs and improve the effi-
ciency of solar cells. In a previous study, Leschkies et al.
fabricated CdSe quantum dot sensitized ZnO nanowire
solar cells [14]. They recorded a power conversion effi-
ciency of 0.4% and a short-circuit current density of
2.1 mA/cm2, which are still low compared with those of
dye-sensitized solar cells. Lévy-Clément et al. prepared
a nanostructured ZnO/CdSe/CuSCN ETA solar cell
[15,16], and a high energy conversion efficiency greater
than 2% was demonstrated under a 340-W/m2 illumin-
ation using a halogen lamp. However, they did not re-
port the energy conversion efficiency under the air
mass (AM)1.5 full sun intensity. Luan et al. reported a
CdS/CdSe co-sensitized solar cell using a facile solution
growth which resulted in a power conversion efficiency
of approximately 1% with a fill factor of 0.55 [17]. Until
now, there have been only a few reports published con-
cerning ZnO/CdSe nanostructure-based solar cells. The
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mechanisms of such structures have not been systemic-
ally studied, and more fundamental researches should be
conducted to provide further understanding of the elec-
tronic transporting process in these nanostructures.
Herein, we reported the fabrication and characterization
of open structure ZnO/CdSe core/shell nanoneedle array-
based solar cells. High short-circuit current densities and
power conversion efficiencies were obtained, which pro-
vided significant insight as to how to improve the photo-
voltaic performance of this type of solar cell.

Methods
Growth of ZnO nanoneedle arrays by solution deposition
ZnO nanoneedle arrays were grown using solution de-
position method [18] on fluorine-doped SnO2 (SnO2:F)
substrate covered with a ZnO seed layer. The ZnO seed
layer was formed by spin coating a solution of zinc
acetate and ethanolamine in 2-methoxy-ethanol at
3,000 rpm, followed by annealing in a furnace at 400°C
for 1 h. Seeded substrates were placed vertically in
aqueous solutions containing 20 mM zinc nitrate,
20 mM hexamethylene-tetramine, and 125 mM 1,3-
diaminopropane at 70°C for 12 h. The sample containing
ZnO nanoneedle arrays was rinsed with deionized water
thoroughly and annealed at 500°C for 1 h to remove
any residual organics and to improve the crystalline
structure.

Deposition of CdSe shell layer using electrochemical
technique
A CdSe coating layer was electrochemically deposited at
room temperature on the ZnO nanoneedle arrays from
an aqueous selenosulfate solution [19]. A two-electrode
electrochemical cell was used with the ZnO nanoneedle
arrays as the cathode and a Pt wire as the counter elec-
trode. CdSe was deposited under galvanostatic conditions
with a current density of 1 mA/cm2 and a charge density
of 0.25 C/cm2. The samples were annealed at 400°C for
1.5 h to increase the mean grain size, which can help to
reduce the negative effects of grain boundary trap states.

Characterization of ZnO nanoneedle arrays and ZnO/CdSe
core/shell nanostructures
The crystal structure of the samples was examined by
X-ray diffraction (XD-3, PG Instruments Ltd., Beijing,
China) with Cu-Kα radiation (λ= 0.154 nm) at a scan
rate of 2° per min. X-ray tube voltage and current were
set at 40 kV and 35 mA, respectively. The morphologies
of the different nanostructures were investigated by
scanning electron microscopy (SEM) (FEI Sirion, FEI
Company, Hillsboro, OR, USA). The high-resolution
transmission electron microscopy (HRTEM) images were
taken with a Technai F-20 microscope (FEI Company,
Hillsboro, OR, USA) at an acceleration voltage of 200 kV.
The HRTEM specimens were prepared by drop casting
the sample dispersion onto copper grid with holey
carbon film and were dried under room temperature.
The room temperature photoluminescence (PL) spectra
of the ZnO/CdSe core/shell nanostructures were mea-
sured by exciting the samples with a YAG solid state laser
at a wavelength of 532 nm. The UV-visible absorption
spectra were obtained using a UV-visible spectrometer
(TU-1900, PG Instruments, Ltd., Beijing, China).

ZnO/CdSe core/shell solar cell assemble and performance
measurement
The solar cells were assembled using the ZnO/CdSe
core/shell nanoneedle array-covered SnO2:F glass as the
photoanode and a SnO2:F glass coated with a thin plat-
inum layer (approximately 10 nm) as the counter elec-
trode. A 100-μm-thick spacer was sandwiched between
these two electrodes to prevent electrical shorts. A poly-
sulfide electrolyte containing 1 M Na2S and 1 M S was
injected into the space between the nanoneedle arrays
and the platinized SnO2:F cathode to complete the cell
assembly. The solar cell current–voltage characteristics
were measured using a Keithley 2400 sourcemeter
(Keithley Instruments Inc., Cleveland, OH, USA) while
illuminating the solar cells with a solar simulator (model
94022A, Newport, OH, USA) at one sun (AM1.5,
100 mW/cm2). The measurements were carried out
with respect to a calibrated OSI standard silicon solar
photodiode. The incident photon-to-current conversion
efficiency (IPCE) measurements were carried out with a
custom measurement system consisting of a 150-W Xe
lamp (LSH-X150, Zolix, Beijing, China), a monochromator
(7ISW30, 7 Star Optical Instruments Co., Beijing, China)
and a sourcemeter (2400, Keithley Instruments Inc.).

Results and discussion
Morphology and crystal structure of ZnO nanoneedle
arrays and ZnO/CdSe core/shell nanostructures
Figure 1a shows an image of an as-grown ZnO nano-
needle array taken by a field emission scanning electron
microscope. The SEM image clearly shows that ZnO
nanoneedles with sharp tips are grown vertically on the
SnO2:F substrate. Further analysis indicates that the aver-
age length of the nanoneedles is about 4 to 5 μm, and the
diameters are 10 nm at the tip and 200 nm at the base.
This nanoneedle array presents an easily accessed open
structure for CdSe deposition and higher hole transfer-
ring speed for the whole solar cell. No significant changes
in nanoneedle array morphology were observed after
annealing at 500°C. After the deposition of CdSe layer
and annealing, a conformal and uniform coverage of all
nanoneedles can be seen in Figure 1b. The oval grains
of CdSe form with a diameter of about several tens of
nanometers are distributed uniformly over the entire



Figure 1 Typical SEM images of ZnO nanoneedle arrays and
ZnO/CdSe core/shell nanostructures. (a) SEM image (40° tilted) of
a ZnO nanoneedle array grown on SnO2:F substrate by solution
method. The average length of the nanoneedle is about 4 to 5 μm.
The diameter to the tip is 10 nm, and the diameter to the base is
200 nm. (b) SEM image (40° tilted) of a ZnO/CdSe core/shell
nanoneedle array coated by electrodeposition. Inset: HRTEM image
of a CdSe grain.
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Figure 2 Morphology and atomic constituent spatial
distribution of the ZnO/CdSe core/shell nanostructures.
(a) Bright field STEM image of the ZnO/CdSe core/shell nanoneedle.
(b) EDX spectra of the CdSe shell layer as indicated by point 1 in (a).
(c) EDX nanoprobe line scan of the elements Zn, Cd, and Se across
the ZnO/CdSe core/shell nanoneedle as indicated by line 2 in (a).
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nanoneedle (with no shadowing effects at the base
which would otherwise be more prevalent with PVD
methods). The single crystallinity of CdSe grains was
confirmed by HRTEM study, as displayed in the inset
of Figure 1b. The lattice spacing obtained from this
HRTEM image was 0.36 nm, which corresponds to the
separation between the {100} lattice planes of wurtzite
CdSe.
The morphology and spatial distributions of the

atomic constituents of the ZnO/CdSe core/shell nano-
needles were further investigated using a Technai F-20
TEM equipped with an energy dispersive X-ray (EDX)
spectrometer and operated in a scanning transmission
electron microscopy (STEM) mode. A low-magnification
STEM image of a core/shell nanoneedle is given in
Figure 2a, which shows that the CdSe grain size ranges
in between 50 to approximately 90 nm. Typical EDX
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Figure 4 Photovoltaic performance of ZnO/CdSe core/shell
solar cells. (a) Photocurrent density and voltage characteristic
(curve 1) and the power output (curve 2) of the ZnO/CdSe core/
shell nanoneedle array-based solar cells under 100 mW/cm2 of
simulated AM1.5 spectrum. (b) IPCE spectra of the same solar cell.

Chen et al. Nanoscale Research Letters 2012, 7:516 Page 4 of 6
http://www.nanoscalereslett.com/content/7/1/516
results for the shell layer (corresponding to point 1 in
Figure 2a) are displayed in Figure 2b, confirming that
the shell layer consists of mainly Cd and Se elements.
The weak Zn and O peaks in the point spectrum can be
attributed to the interaction volume of the electrons,
and the C and Cu peaks are from the TEM grid. An
EDX line scan along line 2 in Figure 2a was conducted to
demonstrate the CdSe coverage on the ZnO nanoneedle.
As shown in Figure 2c, the ZnO nanoneedle is homoge-
neously coated with CdSe shell layer.

Optical properties of the ZnO/CdSe core/shell
nanostructures
The optical properties of the ZnO/CdSe core/shell
nanostructures were investigated by absorption and PL
measurements. Figure 3 shows the absorption and PL
spectra of the ZnO/CdSe core/shell nanoneedle arrays.
An optical bandgap of 1.71 eV is estimated for the CdSe
layer from the absorption spectra, which is in good
agreement with that of bulk CdSe. As the size of the
CdSe grains is well above the CdSe Bohr exciton diam-
eter (approximately 3 nm), no obvious blueshift caused
by quantum confinement is observed. Similar to the
cases of ZnO/ZnSe core/shell nanowires, a significant
optical absorption is observed at wavelengths longer
than the CdSe bandgap, which may arise from a spatially
indirect transition or an interfacial transition coupling a
hole state in CdSe shell with an electron state in the
ZnO core. Strong bandgap excitonic emission at 1.68 eV
upon excitation with a 532-nm laser is observed at room
temperature. This high PL intensity indicates the high
interior crystal quality and low defects of the CdSe shell
layer, which is essential to reduce the recombination of
the excited electron–hole pairs and increase the photo-
current of the solar cells. The high interior crystal quality
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Figure 3 Optical absorption (curve 1) and photoluminescence
(curve 2) spectra of ZnO/CdSe core/shell nanoneedle arrays.
of the CdSe shell layer is also confirmed by its HRTEM
image (inset of Figure 1b).

Photovoltaic performance of ZnO/CdSe core/shell solar
cells
Current and voltage characteristics of the ZnO/CdSe
core/shell nanoneedle array-based solar cell were mea-
sured under 100 mW/cm2 of simulated sunlight illumin-
ation (AM1.5). As shown in Figure 4a, an open voltage
of 0.5 V, a short-circuit current density of 10.5 mA/cm2

and an overall energy-conversion efficiency of 1.07%
were generated. These values are an improvement over
recently reported CdSe quantum dot sensitized ZnO
nanowire solar cells [14]. These promising improve-
ments can be attributed to three important factors of the
ZnO/CdSe core/shell nanoneedle-based solar cell: strong
light absorption in a wider wavelength range; higher
CdSe coverage on ZnO surface, and direct contact be-
tween CdSe and ZnO without any interlinking material.
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Figure 4b shows the IPCE spectrum of the same solar
cell used to measure the I-V characteristics. From the
spectrum, a high IPCE value above 50% is measured in
the wavelength range of 400 to approximately 700 nm
with the highest value of 76% at 570 nm. This wave-
length range is in good correlation with the energy range
of the sunlight spectrum at the Earth's surface where the
flux is maximal. The IPCE values decrease steeply at
wavelength above 700 nm, which are matched well with
those of the corresponding transmission spectrum in
Figure 3 (curve 2).
From the high short-circuit current density and the

IPCE values, we can conclude that the ZnO/CdSe inter-
face forms an ideal type II heterojunction with suitable
band alignment, which is essential to efficient charge
transfer. ZnO nanoneedles have good electron conduct-
ivity and form very open structures, which is advanta-
geous over the short effective diffusion length of
electrons and the diffusion problems associated with
the redox couples in the porous TiO2 network. The
short-circuit current density can be further improved
by increasing the length of the ZnO/CdSe core/shell
nanoneedles. The drawback limiting the energy conver-
sion efficiency of this type of solar cells is a rather poor
fill factor of 0.22, which limits the energy conversion ef-
ficiency. This low fill factor may be ascribed to the
lower hole recovery rate of the polysulfide electrolyte,
which leads to a higher probability for charge recom-
bination [20]. Although the I−/I3

− redox couple has ideal
kinetic properties in regeneration of the oxidized dye
and in inhibition of the recombination of an excited
electron with the electrolyte, it is corrosive to the CdSe
semiconductor, which will cause a rapid degradation of
the solar cell performance. To further improve the effi-
ciency of these nanoneedle array solar cells, a new hole
transport medium with suitable redox potential and low
electron recombination at the semiconductor and elec-
trolyte interface should be developed. Recently Li et al.
reported a very high fill factor of 0.89 in CdS quantum
dot sensitized solar cells based on a modified polysul-
fide electrolyte [21]. If this electrolyte is suitable for our
ZnO/CdSe core/shell solar cells, a much better photo-
voltaic performance can be expected. Moreover, as
reported by Soel et al., other contributions such as the
counter electrode material may also have an influence
in the fill factor [22].

Conclusions
In summary, we have prepared open structure ZnO/
CdSe core/shell nanoneedle arrays on SnO2:F glass by
solution deposition and electrochemical techniques.
Optical measurements indicate that these nanostructures
are very favorable for the use in photovoltaic devices.
Nanoneedle array-based solar cells were assembled using
a polysulfide electrolyte. A much higher short circuit
current and IPCE (76%) are obtained in these solar
cells, showing a promising alternative to existing dye-
sensitized solar cells.
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