
Dai et al. Nanoscale Research Letters 2012, 7:499
http://www.nanoscalereslett.com/content/7/1/499
NANO EXPRESS Open Access
Nonlinear vibration behavior of graphene
resonators and their applications in sensitive
mass detection
Mai Duc Dai1, Chang-Wan Kim1* and Kilho Eom2,3*
Abstract

Graphene has received significant attention due to its excellent mechanical properties, which has resulted in the
emergence of graphene-based nano-electro-mechanical system such as nanoresonators. The nonlinear vibration of
a graphene resonator and its application to mass sensing (based on nonlinear oscillation) have been poorly studied,
although a graphene resonator is able to easily reach the nonlinear vibration. In this work, we have studied the
nonlinear vibration of a graphene resonator driven by a geometric nonlinear effect due to an edge-clamped
boundary condition using a continuum elastic model such as a plate model. We have shown that an in-plane
tension can play a role in modulating the nonlinearity of a resonance for a graphene. It has been found that the
detection sensitivity of a graphene resonator can be improved by using nonlinear vibration induced by an
actuation force-driven geometric nonlinear effect. It is also shown that an in-plane tension can control the
detection sensitivity of a graphene resonator that operates both harmonic and nonlinear oscillation regimes.
Our study suggests the design principles of a graphene resonator as a mass sensor for developing a novel
detection scheme using graphene-based nonlinear oscillators.
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Background
Graphene has recently been attracting the scientific com-
munity due to its excellent electrical [1-3] and/or mech-
anical properties [4-8]; these remarkable properties have
enabled the exploitation of graphene for the development
of nano-electro-mechanical system (NEMS) such as
nanoresonators [9,10]. Specifically, since a pioneering
work by researchers at Cornell [11], graphene has re-
cently been extensively taken into account for designing
nanoresonators that can exhibit high-frequency dynamic
range [11-13] with favorable high Q factors [13-17]. The
high-frequency dynamics of graphene is attributed to its
excellent mechanical properties such as Young's modulus
of approximately 1 TPa [4-8,18]; it is noted that a reson-
ant frequency is linearly proportional to the square root
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of Young's modulus when a device operates in harmonic
oscillation [9,10]. Until recently, most research works
[11-15] (except a work by Eichler et al. [17]) have fo-
cused on the harmonic oscillation of a graphene reson-
ator. However, the nonlinear vibration of a graphene
resonator has not been well studied yet, albeit a recent
study [17] reports an experimental observation of the
nonlinear vibration of a graphene resonator. The non-
linear elastic deformation of a graphene is ubiquitous
due to the fact that a monolayer graphene is an atom-
ically thin sheet so that the out-of-plane deflection of
a graphene is much larger than its thickness [19],
which indicates that a graphene can easily undergo a
nonlinear elastic deflection. Moreover, as discussed in
our previous study [9,20,21], the nonlinear vibration is
a useful route to the development of novel sensitive
detection scheme based on nanoresonators made of
nanomaterials such as carbon nanotubes.
To gain a detailed insight into the underlying mechan-

ism of the vibration of a graphene resonator, an atomistic
simulation such as molecular dynamics (MD) simulation
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has been widely utilized. For instance, Park and cowor-
kers [22,23] have studied various effects such as edge ef-
fect and/or internal friction effect on the vibrational
behavior of graphene resonators using MD simulation.
Furthermore, Park and coworkers [24] have investigated
the energy dissipation mechanism of vibrating polycrys-
talline graphenes fabricated from chemical vapor depos-
ition method by using MD simulation. Despite the ability
of MD simulation to provide detailed characteristics of
the vibrational behavior of graphene resonators, MD
simulation is computationally restricted to studying the
vibrational behavior of a graphene resonator whose
length scale is <10 nm (e.g., see refs. [22,24]). On the
other hand, most experimental studies have considered a
graphene resonator whose length scale is >1 μm (e.g.,
see refs. [11-15]). This clearly indicates that a current
atomistic simulation is unable to be utilized to analyze
an experimentally observed vibrational behavior of a gra-
phene resonator whose length scale is in the order of
micrometer.
The computational limitation of atomistic simulations

in depicting the underpinning principles of experimen-
tally observed mechanics of graphene resonators has led
researchers [19,25-27] to consider a continuum elastic
model, particularly a plate model, for unveiling the vibra-
tional characteristics of a graphene resonator. In order
for a continuum elastic model to dictate the atomistic
feature of the mechanics of a graphene, the elastic con-
stants of a continuum elastic model (e.g., plate model)
for a graphene have to be determined from an atomistic
simulation such as MD simulation as it was taken into
account for deciding the elastic constants of atomic
structures (e.g., lattice) [7,8]. Recently, a plate model with
its elastic constants obtained from MD simulation has
allowed revealing the mechanisms of the mechanics of a
graphene. More remarkably, in a recent study by Isacs-
son and coworkers [19], a plate model has been utilized
for studying the vibrational behavior of a graphene res-
onator; it is shown that the vibrational behavior of a gra-
phene resonator predicted from a plate model, whose
elastic constants were determined from atomistic model,
is consistent with an experimentally observed vibration
of a graphene resonator. However, a recent study by
Isacsson et al. [19] has only concentrated on the har-
monic oscillation of a graphene resonator, even though a
graphene resonator can easily reach the nonlinear vibra-
tion regime. To the best of our knowledge, despite recent
studies [28,29] theoretically reporting the nonlinear
vibration of a graphene resonator, the nonlinear oscilla-
tion of a graphene resonator (particularly, nonlinearity
tuning), as well as atomic mass detection using
graphene-based nonlinear oscillators, has not been well
studied based on a continuum elastic model and/or MD
simulation.
In this work, we have studied the nonlinear vibration
of a graphene resonator using a continuum elastic
model, i.e., plate model. We have found that nonlinear
oscillation is a useful avenue for improving the detec-
tion sensitivity of a graphene resonator and that the
detection sensitivity of a graphene-based nonlinear os-
cillator is governed by both the actuation force (which
determines the nonlinearity of vibration) and the size
of a graphene resonator. It is shown that the nonli-
nearity of vibration for a graphene resonator can be
tuned by an in-plane tension and that such in-plane
tension can modulate the detection sensitivity of a gra-
phene resonator that operates in both harmonic and
nonlinear oscillations. In particular, an in-plane tension
improves the dynamic frequency range and detection
sensitivity of a graphene resonator that operated in
harmonic oscillation, while an in-plane tension deterio-
rates the dynamic frequency range and sensing per-
formance of a graphene-based nonlinear oscillator. Our
study sheds light on a continuum elastic model for
gaining insight into not only the underlying mechan-
isms of nonlinear vibration-based enhancement of the
dynamic frequencies and sensing performance of a gra-
phene resonator, but also the role of an in-plane ten-
sion in modulating the nonlinearity of a graphene
resonator.

Methods
Theory and model
Graphene can be modeled as a plate whose mechanical
deformation is attributed to the strain energy composed
of bending energy UB and stretching energy US repre-
sented in the form [30]

UB ¼ 1
2

Z
Ω

K r2w x; y; tð Þ� �2
dxdy ð1:aÞ

Us ¼ 1
2

Z
Ω

ESh
4 1� v2ð Þ

� @xw x; y; tð Þf g2 þ @yw x; y; tð Þ� �2
h i2

dxdy

þ 1
2

Z
Ω

N0⋅ rw x; y; tð Þ½ �dxdy ð1:bÞ

where κ, ES, h, and ν represent the bending rigidity, axial
stretching modulus, thickness, and Poisson's ratio of a
graphene, respectively, w(x, y, t) indicates the out-
of-plane deflection of a graphene, x and y are the coor-
dinates along the in-plane direction of a graphene,
respectively, N0 is a constant axial tension (due to pre-
strain) applied to a graphene, and the symbol Ω in an in-
tegrand indicates the surface integral. The strain energy
can be related to a potential field prescribed to the
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atomic structure of a graphene, as has been elucidated
in Cauchy-Born model [31-34], such as

XN
i¼1

Uatom
i rð Þ ¼ UB þ US ð2Þ

Here, Uatom
i is a potential field prescribed to an i-th

carbon atom for a graphene, r is the atomic coordi-
nates of a graphene, and N is the total number of car-
bon atoms for a graphene. Here, it should be noted
that when the elastic constants of a graphene (i.e. κ
and ES) are determined from Equation 2, an axial ten-
sion N0 is assumed to be zero (i.e., pre-stress is not
applied to a graphene). As described in a literature
[25], the force field parameters provide the elastic con-
stants of a graphene such as κ = 1.5 eV and ESh =
2,000 eV/nm2.
In order to obtain the equation of motion, we need to

know the kinetic energy T for a vibrating graphene. The
kinetic energy T can be written as

T ¼ 1
2

Z
Ω

ρ0 @tw x; y; tð Þ½ �2dxdy ð3Þ

where ρ0 is the mass density of a graphene; the mass
density ρ0 can be straightforwardly determined from a
relation of ρ0 = NmC/S, where mC is the atomic mass
of a carbon atom, and S is the surface area of a gra-
phene. The equation of motion for a vibrant graphene
can be obtained from the minimization of a Hamilton-
ian H defined as H = U+T−W, where W is the work
done by an external force field such as actuation force.
The variation of the Hamiltonian, δH, can be obtained
as [30,35]

δH ¼ ρ0@
2
t wþ κr4w� ES

2 1� νð Þ @xwð Þ2 þ @yw
� �2n o�

�r2w� ES
1þ ν

@xw@yw@xyw�Nα
0 @

2
αw� f

	
δw¼0

ð4Þ
where f is an actuation force per unit area for a gra-
phene, a symbol δ indicates a variation, δw is a virtual
out-of-plane deflection of a graphene, a Greek index
indicates the coordinates, i.e., α = x (for α = 1) or y
(for α = 2), and a repeated Greek symbol represents
Einstein's summation rule. The equation of motion is
therefore given by

ρ0@
2
t wþ κr4w� ES

2 1� νð Þ @xwð Þ2 þ @yw
� �2n o

r2w

� ES
1þ ν

@xw@yw@xyw� Nα
0 @

2
αw ¼ f ð5Þ
Here, it should be noted that in-plane displacements
are ignored in the governing equation given by Equa-
tion 5 since in-plane displacements are small in com-
parison with out-of-plane displacement w(x, t). In this
work, for theoretical convenience, we assume that axial
force N0 is the biaxial loading represented in the form
of N0 = N0(ex+ ey), where ex and ey indicate the direc-
tional unit vectors in the x and y directions, respect-
ively. Furthermore, the actuation force f is assumed to
be in the form of f = f0cosΩt, where f0 is the ampli-
tude of an actuation force, and Ω is a driving fre-
quency. For solving the equation of motion given by
Equation 5, we assume that the out-of-plane displace-
ment, i.e., w(x, y, t), can be decomposed in the follow-
ing form [9,36-38]

w x; y; tð Þ ¼ z tð Þ⋅ψ x; yð Þ ð6Þ

Here, z(t) indicates a time-dependent amplitude, and
ψ(x, y) represents the deflection eigenmode for a vibrant
graphene. In our work, we presume that a monolayer
graphene exhibits a rectangular shape and that all edges
of a graphene are clamped. The deflection eigenmode
that satisfies the clamped boundary conditions is repre-
sented in the form

ψ x; yð Þ ¼ 2
3

1� cos
2πx
a


 �� 	
1� cos

2πy
b


 �� 	
ð7Þ

where a and b are the lengths of the graphene edges, re-
spectively (see Figure 1). By substituting Equation 6 into
Equation 5 followed by integration by parts, the equation
of motion represented in Equation 5 becomes the Duff-
ing equation [39-41] as follows

μ@2
t z tð Þ þ αz tð Þ þ λ z tð Þ½ �3 ¼ p0 cosΩt ð8Þ

where the parameters μ, α, λ, and p0 are given by

μ ¼ ρ
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Figure 1 Schematic illustration of a suspended graphene resonator onto whose surface atomic mass is adsorbed.
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The vibrational behavior of a graphene resonator can be
numerically described by solving the Duffing equation given
by Equation 8.
For a case in which atoms are adsorbed onto a gra-

phene resonator, as shown in Figure 1, we have to up-
date a parameter μ, while other parameters are identical
to those given by Equations 9.b to 9.d, since atomic ad-
sorption only affects the inertia term dictated by a par-
ameter μ. When atoms are locally adsorbed onto a
graphene with adsorption site given as (xm, ym) as shown
in Figure 1, the inertia term μ is given by

μ ¼ ρabþ
Za

0

Zb

0

Δmδ x� xmð Þδ y� ymð Þψ2 x; yð Þdxdy

¼ ρabþ Δmψ2 xm; ymð Þ
ð10:aÞ

where δ(x) is the Dirac delta function, and Δm is the total
mass of adsorbed atoms. For the case in which atoms are
uniformly adsorbed onto a graphene (i.e., mass adsorption
occurs on the entire surface of a graphene resonator), the
inertia term μ is written as

μ ¼ ρabþ
Za

0

Zb

0

Δm0ψ
2 x; yð Þdxdy

¼ ρabþ Δm0ab � ρabþ Δm

ð10:bÞ

Here, Δm0 is the mass of atoms adsorbed onto the unit
area of a graphene, while Δm is the total mass of adsorbed
atoms onto the entire surface of a graphene. Based on iner-
tia terms for both mass-adsorbed graphene (as described in
Equation 10) and a bare graphene (represented in Equation
9.a), it is straightforward to compute the resonant fre-
quency shift, Δω, of a graphene resonator due to the mass
adsorption;Δω = ω(m+Δm) – ω(m), where ω(m) is the res-
onant frequency of a bare graphene resonator whose ef-
fective mass is given as m (with m = ρab), and ω(m+Δm)
is the resonant frequency of a graphene resonator onto
which the mass adsorption with the amount of Δm occurs.
This frequency shift due to mass adsorption is typically
negative since mass adsorption increases the overall mass
of a resonator and, consequently, reduces the resonant fre-
quency of a resonator with respect to that of a bare
resonator.

Results and discussion
Resonance behavior of graphene
To verify the robustness of a continuum elastic model
described in the section ‘Theory and model’, we have con-
sidered the vibration behavior of a graphene resonator with
a size of 6 μm×6 μm when a graphene is actuated by a
force amplitude of p0 = 0.001 aN (where 1 aN = 10−18 N)
in order to induce the harmonic oscillation of a graphene
resonator. Moreover, we have taken into account the case
in which an in-plane tension N0 is driven by pre-strain,
such as N0 = EShE0/(1− ν), where ES, h, and ν indicate the
stretching modulus, thickness, and Poisson's ratio of a gra-
phene resonator, respectively, and E0 is the pre-strain ap-
plied to a graphene resonator. With E0 = 4×10−5, the



Figure 2 Resonance behavior of graphene in harmonic oscillation. (a) Resonance curve of a squared graphene resonator with a size of
D = 6 μm, where a graphene operates in harmonic oscillation driven by an actuation amplitude of p0 = 10−3 aN. (b) Resonant frequencies of
graphene resonators operating in harmonic oscillation as a function of not only their size but also the boundary conditions. (c) Resonant
frequencies of a graphene as a function of pre-strain applied to it.

Dai et al. Nanoscale Research Letters 2012, 7:499 Page 5 of 10
http://www.nanoscalereslett.com/content/7/1/499
resonant frequency of a graphene undergoing a harmonic
oscillation is predicted as ω0 = 20.63 MHz, which is con-
sistent with the experimentally measured resonant fre-
quency of 19.8 MHz (see Figure 2a and also ref. [11]). This
indicates that a continuum elastic model (i.e., plate model)
is suitable for understanding the dynamic behavior of a
graphene resonator. It should be noted that a continuum
elastic model overestimates the resonant frequency of a
graphene when compared with that measured from experi-
ments (for more details, see description as follows).
As described above, the resonant frequency of a gra-

phene resonator predicted from a continuum elastic
model is overestimated in comparison with that mea-
sured from experiment. This may be attributed to the
boundary condition that we used in our simulation; in
our simulation, we have utilized the fully clamped
boundary conditions such as ψ(x, y) = rψ(x, y) = 0 along
all edges; this boundary condition is referred to as “fully
clamped” boundary condition. In order to understand
the effect of boundary condition on the resonant fre-
quency of a graphene resonator, we have taken into ac-
count the deflection eigenmode in the form of ψ(x, y) =
sin(πx/a)⋅sin(πy/b), which satisfies the boundary condi-
tion as follows: ψ(x, y) = 0 at all edges, but rψ(x, y) 6¼ 0
along all edges. This boundary condition is referred to as
“weakly clamped” boundary condition. As shown in
Figure 2b, the resonant frequency of a graphene reson-
ator that is weakly clamped is almost close to the theor-
etical predictions obtained from the membrane model
[15]. Moreover, it is shown that the resonant frequency
of a graphene resonator is critically dependent on the
boundary condition; the weak clamping of a graphene
resonator reduces its resonant frequency. In this work,
we have considered a fully clamped graphene resonator,
otherwise specified. The resonant frequencies of graphene
resonators predicted from our continuum elastic model
(i.e., plate model) are consistent with experimentally
measured frequencies of graphene resonators [15]. In
addition, it is shown that pre-strain increases the resonant
frequency of a graphene (Figure 2c).
Now, we have taken into account the nonlinear oscilla-

tion of a squared graphene resonator with a size of D =
250 nm, to which pre-strain with the amount of E0 =
10−5 is applied. It is shown that when the amplitude of
an actuation force is in the order of 0.01 fN, the gra-
phene resonator undergoes harmonic oscillation. On
the other hand, when a graphene resonator is actuated
by the amplitude of an actuation force in the order of
>0.05 fN, the graphene resonator experiences nonlinear
vibration (Figure 3a). This is attributed to the geomet-
ric nonlinear effect due to fully clamped boundary con-
dition. In order to quantitatively characterize the
nonlinear vibration of a graphene resonator, we have
introduced a dimensionless parameter θ = (ω−Ω0)/Ω0,
where ω is the resonance of a nonlinearly oscillating
graphene, and Ω0 is the harmonic resonance of a gra-
phene defined as Ω0 = (α/μ)1/2. Here, it should be
noted that the dimensionless parameter θ represents
the degree of nonlinearity for the resonance of a gra-
phene. Figure 3b shows the nonlinearity of graphene
resonance (dictated by the dimensionless parameter θ)
as a function of the amplitude of an actuation force. It
is found that when a graphene resonator bears a pre-
strain with the amount of 10−5, the amplitude of an ac-
tuation force in the order of 0.5 fN results in θ = 0.15,
which indicates that the resonance behavior at an amp-
litude of 0.5 fN is close to the harmonic oscillation. As
the amplitude increases, the dimensionless parameter θ
significantly increases, indicating that the nonlinearity of
graphene resonance can be induced by a large amplitude
of actuation force. In particular, when the graphene res-
onator is actuated with an actuation amplitude of 5 fN,
the parameter θ becomes θ = 0.75, indicating that the
resonance behavior is highly nonlinear. This indicates



Figure 3 Resonance behavior of graphene in nonlinear oscillation. (a) Resonance curves of a graphene resonator (with its size of
D = 250 nm) as a function of actuation amplitude p0. (b) Dimensionless parameter θ, which represents the degree of nonlinearity in the vibration
of a graphene resonator, as a function of actuation amplitude p0.
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that the nonlinear vibration of a graphene resonator can
be easily observed even when the actuation amplitude is
applied in the order of 1 fN. The nonlinear vibration of
a graphene resonator actuated with an actuation ampli-
tude p0 even in the order of 1 fN is attributed to the fact
that the deflection amplitude of a graphene resonator is
typically much larger than the thickness of a graphene
resonator.

Resonant response of graphene resonators to mass
adsorption
Even though graphene resonator has recently been ex-
tensively considered as a NEMS device for its applica-
tions in actuation, it has been barely employed as a mass
sensor that enables highly sensitive atomic detection (e.g.,
measurement of atomic weight). The high detection
sensitivity of a graphene resonator is attributed to the
high-frequency dynamic range that is achieved due to
high elastic stiffness and low mass density of a graphene
resonator. In this study, we have scrutinized the reson-
ant responses of graphene resonators, which undergo
not only harmonic oscillation but also nonlinear vibra-
tion, to atomic adsorption onto the surface of a gra-
phene resonator. Our study on the nonlinear response
of a graphene resonator to mass adsorption is ascribed
to our previous finding [9,20,21] that nonlinear oscilla-
tion is useful in improving the detection sensitivity of a
nanoresonator.
We have considered a squared graphene resonator

whose size is D = 250 nm without any applied pre-strain
(i.e., N0 = 0). Figure 4a depicts the resonant frequency
shift of the graphene resonator due to atomic adsorption
as a function of atomic mass as well as the amplitude of
an actuation force. In this work, we have assumed that
atomic mass was adsorbed onto the center of a graphene
resonator. In general, as shown in Additional file 1: Figure
S1, the frequency shift due to mass adsorption for a gra-
phene is dependent on the location at which atomic mass
was adsorbed. Moreover, it is presumed that the stiffness
of the adsorbed molecule is ignored since the elastic
modulus of a graphene is in the order of 1 TPa [6], which
is much higher than that of adsorbed molecules such as
proteins whose elastic modulus is in the order of 10 GPa
[42,43]. It is shown that the resonant frequency shift
due to mass adsorption is linearly proportional to the
adsorbed mass when a graphene resonator is actuated by
a small amplitude of actuation force (e.g., p0 = 1 aN).
On the other hand, when a graphene resonator is excited
by a large amplitude of actuation force (e.g., p0 = 5 fN),
the frequency shift due to mass adsorption is no longer
proportional to the adsorbed mass. It is also found that
as the amplitude of actuation force increases, the reson-
ant frequency shift due to mass adsorption significantly
increases, which indicates that nonlinear oscillation
increases the detection sensitivity of a graphene reson-
ator as anticipated. In order to gain a deep insight into
the effect of nonlinear oscillation on the detection sensi-
tivity of a graphene resonator, we have taken into ac-
count the resonant response of a graphene resonator to
atomic adsorption with the amount of Δm = 10 ag. As
shown in Figure 4b, the frequency shift of a graphene
resonator to atomic adsorption with the amount of



Figure 4 Graphene resonators response to mass adsorption. (a) Frequency shifts of a graphene resonator due to mass adsorption as a
function of actuation amplitude p0 and the amount of adsorbed mass Δm. (b) Frequency shifts of a graphene resonator due to atomic
adsorption with the mass of Δm = 10 ag are found as a function of actuation amplitude p0, while the dimensionless parameter θ of a graphene
resonator with mass adsorption of Δm = 10 ag is shown. (c) Frequency shifts of graphene resonators due to atomic adsorption with mass of
Δm = 20 ag with respect to the size of graphene resonators as well as the actuation amplitude p0.
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Δm = 10 ag is critically dependent on the amplitude of
actuation force. In addition, we have shown the afore-
mentioned dimensionless parameter θ as a function of
the amplitude of actuation force (Figure 4b). It is shown
that when the actuation amplitude is <0.5 fN, which cor-
responds to the harmonic oscillation (θ < 0.2), the fre-
quency shift of a graphene resonator with a size of D =
250 nm (without any pre-strain) due to atomic adsorp-
tion with the amount of 10 ag is in the order of
0.1 GHz. On the other hand, when an actuation ampli-
tude is increased to 5 fN, which corresponds to highly
nonlinear oscillation (i.e., θ = 1.6), the frequency shift
due to mass adsorption (with the amount of 10 ag)
increases by about sixfold (i.e., Δω = 0.6 GHz). This
clearly elucidates that the nonlinear vibration is useful in
increasing the frequency shift of a graphene resonator
due to mass adsorption, which highlights the nonlinear
vibration that improves the detection sensitivity of a gra-
phene resonator.
We have also studied the effect of graphene size (D) on

the frequency shift of a graphene resonator due to mass
adsorption, Δω, with respect to the actuation amplitude
(p0). It is found that for a graphene resonator whose size
is D ≥ 150 nm, the increase of actuation amplitude
enhances the frequency shift of a graphene resonator due
to mass adsorption, which is consistent with our conjec-
ture that nonlinear vibration improves the detection sen-
sitivity of a graphene resonator. On the other hand, for a
graphene resonator whose size is D ≤ 100 nm, an increase
in the actuation amplitude does not significantly amplify
the frequency shift of a graphene resonator due to mass
adsorption in comparison to that of a large-scale gra-
phene resonator (i.e., D > 200 nm). This indicates that
even though large actuation amplitude induces the
nonlinear oscillation of a small-scale graphene resonator
(e.g., D < 100 nm), the nonlinear vibration does not re-
markably increase the frequency shift due to mass
adsorption. This result suggests that the length scale of a
graphene resonator plays a central role in not only the
dynamic frequency range of a graphene resonator but
also in the sensing performance of graphene-based non-
linear oscillators.

Effect of pre-strain applied to graphene resonators on
their resonance behaviors and sensing performances
As described in previous studies [9,20,21], a mechanical
tension (due to pre-strain or pre-stress) applied to a res-
onator leads to the increase of the dynamic frequency
range of a resonator as well as its sensing performance.
In this study, we have investigated how a pre-strain ap-
plied to a graphene resonator improves not only the dy-
namic behavior of a graphene resonator but also the
detection sensitivity of a graphene resonator that oper-
ates in both harmonic and nonlinear oscillations.
We have studied the frequency change of a graphene

resonator due to an in-plane tension with respect to the
actuation amplitude (Figure 5a). Here, the frequency
change is defined as the difference between the resonant
frequencies of a graphene resonator bearing an in-plane
tension and a bare graphene resonator, respectively. For
a graphene resonator operating in harmonic oscillation,
an in-plane tension increases the resonant frequency of
a graphene resonator, which attributes to the fact that an
in-plane tension stiffens the system. When a graphene
resonator is actuated by the actuation amplitude in the
order of 1 fN (leading to the nonlinear vibration of a
graphene), it is interestingly found that the application
of an in-plane tension (<6 pN/nm) to a graphene reson-
ator reduces the resonant frequency of a graphene,
which indicates that the in-plane tension is not useful in
increasing the dynamic frequency range of a graphene
operating in nonlinear vibration. This is consistent with
our previous studies [20,21] reporting that the dynamic
frequency range of a nanoresonator undergoing nonlinear



Figure 5 Effects of pre-strain on bare graphene resonator. (a) Frequency shifts of a bare graphene resonator (i.e. without any mass
adsorption) due to in-plane tension as a function of an in-plane tension N0 and actuation amplitude p0. (b) Dimensionless parameter θ of
graphene resonators as a function of actuation amplitude p0 and in-plane tension N0. (c) Critical in-plane tensions, which induce the transition
from nonlinear vibration to harmonic oscillation for graphene resonators, are computationally obtained as a function of the size of a graphene
resonator and actuation amplitude.
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oscillation is decreased by a mechanical tension. How-
ever, it is remarkably found that when an in-plane tension
is >6 pN/nm, the application of such in-plane tension
increases the resonant frequency of a graphene resonator
actuated by the amplitude of 1 fN. This may be attributed
to the conjecture that an in-plane tension of 6 pN/nm to
a graphene resonator actuated by an amplitude of 1 fN
may induce the transition from nonlinear vibration to
harmonic oscillation.
In order to validate our conjecture that an in-plane

tension can play a role in the transition from nonlinear
vibration to harmonic oscillation, as shown in Figure 5b,
we have plotted the dimensionless parameter θ (repre-
senting the degree of nonlinearity) as a function of actu-
ation amplitude and in-plane tension. When the
actuation amplitude is in the order of 0.01 fN, the vibra-
tion behavior of a graphene becomes almost harmonic
oscillation regardless of in-plane tension, as anticipated.
For a graphene resonator actuated by an actuation amp-
litude of 1 fN, the dimensionless parameter for a bare
graphene resonator (i.e. N0 = 0) is in the order of 10,
which indicates that the vibration behavior of a bare gra-
phene is almost nonlinear oscillation. On the other hand,
when an in-plane tension with the amount of 10 pN/nm
is applied to a graphene resonator actuated by the amp-
litude of 1 fN, the dimensionless parameter is in the
order of 0.5, which indicates that an in-plane tension
reduces the nonlinearity of the resonance of a graphene.
As in-plane tension increases, the nonlinearity is signifi-
cantly reduced even up to the order of 10−1, indicating
that the resonance behavior is almost harmonic oscilla-
tion. Our result suggests that an in-plane tension plays a
central role not only in increasing the dynamic fre-
quency range of a graphene resonator but also in indu-
cing the transition from nonlinear vibration to harmonic
oscillation.
Figure 5c depicts the critical in-plane tension that is
responsible for the transition from nonlinear resonance
to harmonic oscillation. Here, the critical in-plane ten-
sion is defined as an in-plane tension at which nonlinear
oscillation is transitioned to harmonic vibration. It is
found that the role of in-plane tension in such transition
is highly correlated with the size of a graphene reson-
ator. For instance, for a graphene resonator whose size is
D = 200 nm, the resonance behavior of a graphene actu-
ated by an amplitude of ≤0.3 fN is almost close to har-
monic oscillation. On the other hand, the vibrational
behavior of a 350-nm graphene resonator driven by even
an amplitude of 0.1 fN becomes nonlinear oscillation.
This indicates that the size of a graphene resonator
determines the actuation amplitude that is required to
induce the nonlinear vibration of a graphene resonator.
Moreover, it is shown that the smaller the graphene
resonator is, the smaller is the amount of an in-plane
tension that can induce the transition from nonlinear os-
cillation to harmonic resonance. This suggests that an
in-plane tension-driven transition from nonlinear vibra-
tion to harmonic oscillation is determined by the size of
a graphene resonator.
Now, we have studied the role of an in-plane tension

on the detection sensitivity of a graphene resonator that
experiences both nonlinear vibration and harmonic os-
cillation (Figure 6). For a graphene resonator operating
in harmonic oscillation (e.g., a graphene actuated by an
amplitude of 1 aN), an in-plane tension critically ampli-
fies the frequency shift of a graphene resonator due to
mass adsorption, which is consistent with our conjecture
that the detection sensitivity of a graphene resonator is
increased by an in-plane tension due to the in-plane ten-
sion-driven increase of the resonant frequency of a gra-
phene. On the other hand, for a graphene resonator
undergoing nonlinear vibration (e.g., actuated by an



Figure 6 Effects of pre-strain on graphene resonator in either harmonic or nonlinear oscillation. (a) Frequency shifts of a graphene
resonator, operating in either harmonic oscillation or nonlinear vibration, due to atomic adsorption with mass of Δm = 20 ag as a function of
in-plane tension. (b) Frequency shifts of graphene resonators, which undergo harmonic oscillations, due to atomic adsorption (with mass
of Δm = 20 ag) as a function of the size of graphene resonator and in-plane tension. (c) Frequency shifts of graphene resonators, operating in
nonlinear vibrations, due to atomic adsorption (with mass of Δm = 20 ag) with respect to the size of graphene and in-plane tension.
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actuation amplitude of 1fN), an in-plane tension with
the amount of <7 fN (corresponding to the critical in-
plane tension that induces the transition from nonlinear
vibration to harmonic oscillation of a graphene)
decreases the amount of frequency shift due to mass ad-
sorption, which suggests that an in-plane tension is inef-
fective in improving the detection sensitivity of a
graphene resonator operating in nonlinear oscillation.
However, when a graphene resonator is actuated by an
amplitude of >7 fN, an in-plane tension increases the
amount of frequency shift for a graphene resonator due
to mass adsorption, which is attributed to the fact that a
graphene resonator actuated by an amplitude of >7 fN
obeys the harmonic oscillation. Moreover, we have also
investigated the frequency shift of a graphene resonator,
which operates in either harmonic oscillation or non-
linear vibration, due to mass adsorption (i.e., Δm = 20
ag) as a function of the size of graphene as well as in-
plane tension. It is interestingly found that for graphene
resonators operating in both nonlinear oscillation and
harmonic vibration, an in-plane tension-induced im-
provement of detection sensitivity of a graphene reson-
ator is significantly dependent on the size of a graphene
such that an in-plane tension is useful in increasing the
detection sensitivity of a graphene resonator whose size
is D � 100 nm, whereas an in-plane tension is ineffect-
ive in enhancing the sensing performance of a graphene
with a size of D > 300 nm in comparison with the de-
tection sensitivity of a graphene resonator with a size of
D = 100 nm. Our study sheds light on the important
role of an in-plane tension on modulating not only the
resonance behavior of a graphene resonator but also the
detection sensitivity of a graphene resonator.

Conclusions
In this work, we have studied the vibrational behaviors of
graphene resonators as well as their sensing performance
based on continuum elastic model such as plate model.
It is shown that nonlinear vibration is useful in improv-
ing the detection sensitivity of a graphene resonator and
that an in-plane tension is able to tune both the nonli-
nearity of the vibrating graphene resonators and their
detection sensitivity. It should be noted that, in this
work, our continuum model is only applicable to a
monolayer graphene resonator. For modeling the multi-
layered graphene resonator, the interactions between
graphene sheets have to be considered in the continuum
modeling [27], which will be studied for our future work.
Moreover, our continuum elastic model discards the fi-
nite size effect (i.e., edge effect) on the dynamic behavior
(and also sensing performance) of a monolayer graphene
resonator; here, edge (stress) effect arises from the im-
balance between coordination numbers for edge atoms
and bulk atoms, respectively [25,44]. This edge stress ef-
fect on a monolayer graphene is conceptually identical
to the surface stress effect on a nanowire resonator [9].
Such edge effect on the frequency behavior of a gra-
phene resonator and its sensing performance will be
studied for our future work.

Additional file

Additional file 1: Figure S1. The dependence of frequency shift due to
mass adsorption of a graphene on the location at which atomic mass
was adsorbed.
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