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chemistry and ATRP for enrichment of Pb(II) ion
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Abstract

Silica nanoparticles have been functionalized by click chemistry and atom transfer radical polymerization (ATRP)
simultaneously. First, the silanized silica nanoparticles were modified with bromine end group, and then the azide
group was grafted onto the surface via covalent coupling. 3-Bromopropyl propiolate was synthesized, and then the
synthesized materials were used to react with azide-modified silica nanoparticles via copper-mediated click chemistry
and bromine surface-initiated ATRP. Transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray
photoelectron spectroscopy, and thermogravimetric analysis were performed to characterize the functionalized silica
nanoparticles. We investigated the enrichment efficiency of bare silica and poly(ethylene glycol) methacrylate
(PEGMA)-functionalized silica nanoparticles in Pb(II) aqueous solution. The results demonstrated that
PEGMA-functionalized silica nanoparticles can enrich Pb(II) more quickly than pristine silica nanoparticles within 1 h.
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Background
In recent years, silica nanoparticles (SNPs) have received
significant attention due to their chemical inertness,
nontoxicity, optical transparency, and excellent thermal
stability [1-3], which can be widely used in catalysis [4],
chemical process industry [5], removal of metal ions [6],
and metal ion preconcentration [7-9] through polymer
coatings or other functional groups. For many applica-
tions, there are several chemical methods for controlling
the nanoparticles’ surface functionality, such as chemi-
sorptions [10], sol–gel process, and immobilization of
organic molecules by silane coupling reagents [11],
which can result in the immobility, mechanical stability,
and water insolubility of functionalized SNPs [12].
Polymerization methods involving living free radical
nitroxide-mediated polymerization, reversible addition-
fragmentation chain transfer (RAFT), and atom transfer
radical polymerization (ATRP) were commonly consid-
ered as effective techniques to functionalize materials
[13-16]. Especially, the ATRP technique has been devel-
oped rapidly due to the advantages of being simple, in-
expensive, and more general for controlled radical
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polymerization when it was firstly proposed by Wang
and Matyjaszewsi [17]. There are a greater number of
researchers using ATRP to functionalize SNPs [18-22].
With the appearance of the click chemistry proposed

by Sharpless [23], the copper(I)-catalyzed azide-alkyne
1,3-dipolar cycloaddition reaction also becomes a par-
ticularly powerful approach to synthesize designed mole-
cules or modify inorganic materials because only mild
reaction conditions are required and the extreme select-
ivity toward molecules bearing azides and alkynes pre-
vents unwanted side product [24-26]. Recently, some
literatures reported that gold nanoparticles, silicon oxi-
des, carbon nanotubes, and other materials were functio-
nalized by click chemistry [27-30].
Based on the advantages of ATRP and click chemistry,

the combination of these two methods has attracted at-
tention to functionalize nanomaterials. Ranjan and
Brittain [31] successfully grafted polymer chains onto
SNPs through a combination of RAFT polymerization
and click chemistry. Wang and co-workers [32] utilized
ATRP and click chemistry to modify particles. Polystyr-
ene brushes were firstly introduced on the surface via
ATRP, and then the click reaction was generated on the
surface of polymerized SNPs. The combination of
surface-initiated ATRP and Huisgen [3 + 2] cycloaddition
[33,34] was also developed as a versatile method for the
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functionalizations of SNPs. Most of the literatures
reported the combination of ATRP and click chemistry
to modify nanomaterials in tandem.
Herein, we described the immobilization of the initi-

ator on the SNP surface via 1,3-dipolar cycloaddition,
which can simultaneously initiate surface-induced ATRP
of poly(ethylene glycol) methacrylate on the SNP sur-
face. The general steps for the preparation of functiona-
lized SNPs are shown in Figure 1. Based on the special
characteristics of the ethylene glycol end group, we
investigated the enrichment properties of Pb(II) in aque-
ous solution.
Methods
Materials
3-Bromopropanoic acid and propargyl acid were obtained
from Alfa Aesar (Ward Hill, MA, USA). Poly(ethylene gly-
col) methacrylate (PEGMA), 1,3-dicyclohexylcarbodiimide
(DCC), N-hydroxysuccinimide (NHS), 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide hydrochloride (EDC),
4-dimethylaminopyridime (DMAP), and sodium azide
(NaN3) were obtained from Sigma-Aldrich Corporation
(St. Louis, MO, USA). 3-Aminopropyltriethoxysilane
(APTES) was purchased from Dow Corning Corporation
(Midland, MI, USA). CuBr and 3-bromo-1-propanol were
obtained from Shanghai Jingchun Reagent Co., Ltd.
(Aladdin; Shanghai, China). Tetraethyl orthosilicate
(TEOS) and 2,20-bypiridine (Bpy) were purchased from
Tianjin Chemical Reagent Co. Ltd. (Tianjin, China).
Figure 1 The steps of functionalized silica nanoparticles by click chem
Synthesis of 3-bromopropyl propiolate
3-Bromo-1-propanol (3 ml, 33 mmol), DCC (5 g, 25.5
mmol), and DMAP (0.6 g, 5.04 mmol) were dissolved in
100 ml of dichloromethane (DCM), then propargyl acid
(4.5 ml, 42 mmol) was added into the solution slowly.
The mixture was stirred at room temperature in a dark
room for 24 h, diluted with DCM, filtered off, and
washed with DCM until white particles were observed.
Then, the liquid was evaporated completely using a ro-
tary evaporator. The products were dried in a clean vac-
uum at 50°C overnight.
Preparation and modification of silica particles
The spherical silica particles were prepared from TEOS
using NH3·H2O as catalyst according to the Stöber method
[35]. Then, 65 ml of ethanol, 3 ml of deionized water, and
10 ml of NH3·H2O (25%) were added into a flask with vio-
lent stirring at 40°C for 2 h; 5 ml of TEOS was added into
the above solution dropwise. The mixture was kept at 40°C
with stirring overnight. After the reaction, the mixture was
separated by centrifugation and the white particles were
washed with water, ethanol, and toluene, respectively.
Then, the silica particles were dispersed in 50 ml of toluene
by ultrasonication to produce a homogeneous suspension.
The surface of SiO2 has functioned as an amino group

by a silanization reaction according to a previous report.
Namely, the prepared SiO2 homogeneous suspension
was put into a 100-ml round flask, and APTES (5.3 ml,
23 mmol) was added using a syringe. The reaction
istry and ATRP.
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mixture was refluxed at 95°C in oil bath with stirring for
10 h. The obtained amino group-immobilized silica parti-
cles, defined as SiO2-NH2, were collected by centrifugation
and washed with ethanol (2 × 50 ml) and N,N-dimethylfor-
mamide (DMF; 2 × 50 ml) in turn, then dispersed in 50 ml
of DMF to immobilize the azide group.
3-Bromopropionic acid (2.8 g, 18.4 mmol), NHS (2.4 g,

7 mmol), and EDC (4 g, 22.3 mmol) were added to the
SiO2-NH2 and DMF solution with stirring and protected
from light at 80°C under N2. After 24 h, 3 g of NaN3 was
added into the above system for 24 h. Then, particles
called SiO2-N3 were collected by centrifugation and
washed with water and DMF.
Surface-initiated atom transfer radical polymerization by
click chemistry
The reaction involved in click reaction and atom transfer
radical polymerization was described as follows: The
prepared azide-modified SiO2 and 3-bromopropyl propio-
late were dispersed in 50 ml of DMF, then CuBr (43 mg,
0.3 mmol), Bpy ligand (90 mg, 0.6 mmol), and PEGMA
(10 ml, 30 mmol) were added quickly; the reaction was
stirred at 80°C under N2 for 24 h. After the reaction, the
grafted PEGMA silica particles were collected by centrifu-
gation, referred as SiO2-PEGMA; the product was washed
with DCM at least three times to remove the excess react-
ant, then washed with ethanol and deionized water, and
dried in a clean vacuum oven at 50°C overnight.
Figure 2 TEM images. (A) Silica nanoparticles, (B) silica nanoparticles trea
silica nanoparticles modified via click chemistry and ATRP simultaneously.
Sensing of Pb2+

Sensing of Pb2+ experiments were carried out by the fol-
lowing steps: a 10 ml portion of the aqueous sample so-
lution, containing 100 mg/l Pb2+, was prepared, and the
pH value was adjusted to 6 with aqueous HCl. Then, 50
mg of SiO2 nanoparticles and SiO2-PEGMA were dis-
persed in eight portions of the above solution with an
ultrasonic oscillator, and the solutions were stewed for
0.5, 1, 2, and 3 h, respectively. The particles were sepa-
rated by centrifugation. The supernatant was detected
by atomic absorption spectroscopy (AAS).
Surface characterization
Fourier transform infrared (FT-IR) spectra were obtained
using a Spectrum One FT-IR spectrometer (IR Prestige-
21, Shimadzu Corporation, Kyoto, Japan) with a reso-
lution of 4 cm−1. To characterize the layers formed on
the surface of the nanoparticle, the powder was milled
with KBr, and the mixture was pressed into a disk for
analysis. The morphology and size of SNPs were studied
by transmission electron microscopy (TEM) with a JEOL
200CX (Akishima-shi, Japan). X-ray photoelectron spec-
troscopy (XPS) was performed on a PHI 5500 electron
spectrometer (Physical Electronics, Inc., Chanhassen,
MN, USA) using 200-W Mg radiations. The binding
energies were referenced to the C 1s line at 284.8 eV
from adventitious carbon. Thermogravimetric analysis
(TGA) was carried out using a Netzsch STA449 F3
ted with APTES, (C) azide-functionalized silica nanoparticles, and (D)



Figure 3 FT-IR spectra of SiO2 (a), SiO2-NH2 (b), and SiO2-N3 (c)
nanoparticles.
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thermogravimetric instrument (Wolverhampton, UK) at
a heating rate of 10°C/min under a flow of nitrogen.
AAS was carried out using an AA-6800 instrument
(Shimadzu Corporation).

Results and discussion
We performed TEM to characterize the morphologies of
SiO2 and modified SiO2 nanoparticles (Figure 2). From
Figure 2A, we can see clearly that the mean size of the
particles is about 300 nm and the shape shows regulated
sphericity. The average diameter of amino group-
modified SNPs is about 355 nm (Figure 2B). Azide-
functionalized SNPs and SNPs modified via click chem-
istry and ATRP simultaneously are presented in
Figure 2C,D, respectively. The shape of the modified
SNPs maintained the original spherical morphology.
Figure 4 Wide-scan (A) and N 1s core-level (B) spectra of azide-functi
The FT-IR spectra of SiO2, SiO2-NH2, and SiO2-N3

are shown in Figure 3. Strong adsorption peaks at about
1,113 cm−1 were observed for all the samples, indicating
the existence of Si-O-Si stretching vibration of silanol
groups. The -CH2 groups were confirmed by C-H
stretching at 2,926 cm−1 and C-H scissoring vibration at
1,456 cm−1. O-H stretching and bending vibrations
could be detected at 1,629 and 3,600 to 3,300 cm−1. In
Figure 3b, the adsorption peak at about 3,420 cm−1 was
assigned to N-H stretching vibration, suggesting that the
amino organic groups were introduced to the surface of
SNPs. A peak at 1,734 cm−1 observed in Figure 3c corre-
sponded to the C =O stretching. Furthermore, the azide
group-modified SNPs are an essential intermediate for
the click chemistry reaction, which was demonstrated by
a new peak at 2,110 cm−1 in the spectrum of Figure 3c.
In order to further confirm the SNPs modified via

click chemistry and ATRP simultaneously, the products
were characterized by XPS analysis. The introduction of
the azide group onto SNPs was demonstrated by the
XPS spectrum in Figure 4, which presented the wide-
scan (A) and N 1s core-level (B) spectra. The wide-scan
spectra of the SiO2-N3 surface was dominated clearly by
signals attributable to Si 2p, Si 2s, C 1s, N 1s, and O 1s
with binding energies at about 101.2, 154, 284.2, 401.2,
and 535.2 eV, respectively. The N 1s core-level spectra of
azide-modified SNPs can be curve-fitted into three peak
components with binding energies at about 399.8,
400.7, and 403 eV, attributable to the O = C-N, C-N-H,
and C-N =N=N species, respectively.
Figure 5A showed the wide-scan spectrum of the

SiO2-PEGMA surface, which was dominated by signals
attributable to Si 2p, Si 2s, C 1s, N 1s, O 1s, and Br with
binding energies at about 101.8, 153, 284.2, 399.4, 531.4,
and 67.4 eV, respectively. The peak of Br was observed
at 67.4 eV, which could have originated from 3-
bromopropyl propiolate. Figure 5B and C present the
XPS spectra of C 1s and N 1s narrow scan on the SiO2-
onalized silica nanoparticles.



Figure 5 Wide-scan (A) and C 1s (B) and N 1s (C) core-level spectra of modified SNPs. The inset in (A) is Br 3d core-level spectrum.
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PEGMA nanoparticles. The C 1s core-level spectrum
can be curve-fitted with four peak components having
binding energies at about 284.4, 285.7, 286.2, and 287.2
eV attributable to the C-H, C-N, C-O, and O = C-O spe-
cies, respectively. The N 1s core-level spectrum can be
curve-fitted into three peak components with binding
Figure 6 TGA of APTES-treated (a), azide-modified (b), click and
ATRP-functionalized (c) silica nanoparticles.
energies at about 397.9, 399.8, and 400.7 eV which are
ascribed to the C-N-N =N, O = C-N, and C-N-H spe-
cies, respectively (Figure 5C).
Figure 7 The comparison of supernatants’ Pb2+concentration in
SiO2 and SiO2-PEGMA solutions. The initial concentration of Pb2+

is 100 mg/l; the volume of Pb2+ is 10 ml; the weight of
nanoparticles is 50 mg; the adsorption times are 0.5, 1, 2, and 3 h;
and the temperature is 25°C.
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The TGA curves of the functionalized nanoparticles
are shown in Figure 6, from which an approximate
amount of functional groups on the silica surface could
be confirmed. The weight loss of APTES-treated SNPs
was about 13%, which is attributed to the loss of the
APTES layer. We can see obviously from curve b of
Figure 6 that the weight loss of azide-modified nanopar-
ticles is about 18.9% for the whole temperature range. It
was calculated that there was about 5.9% mass loss for
azide molecule-functionalized SNPs. After click chemis-
try and ATRP simultaneously, the first stage shows a
weight loss of about 21% at 400°C while the second stage
accounts for 8.7% of another weight loss (Figure 6c).
These two stages of weight loss may indicate the degrad-
ation of PEGMA and that 1,2,3-triazole ring derivates
molecules on the surface of SNPs, respectively.
The mechanism of metal ion adsorption from aqueous

solution is related with physical and chemical processes,
and the chemical binding reactions which happened in-
volve metal ions and surface functional groups [36]; ad-
sorption will be affected as the functional groups
increase. After the successful preparation of PEGMA-
modified SNPs, functionalized nanoparticles were uti-
lized to absorb lead ions in the aqueous solution. From
the adsorption experiment, the concentration of super-
natant fluid is presented in Figure 7. We can find that
polymerized SNPs were adsorbed faster than uncoated
nanoparticles and the adsorption capacity of polymer-
ized SNPs was also higher than that of uncoated nano-
particles, particularly within 1 h. It may be due to the
polymerization process which can immobilize more
functional groups on the surface of SNPs to chelate
metal ions.

Conclusions
After introducing amino groups onto silica surfaces, the
ATRP initiator was successfully immobilized via click
chemistry while poly(ethylene glycol) methacrylate
chain-modified SNPs were obtained. This method takes
advantage of click chemistry to optimize ATRP, which
we have offered as a versatile pathway to functionalize
SNPs. It will develop a series of desired functional
groups and also extend this current different functional
polymer chains which have potential application in the
fabrication of SNP-based nanocomposites. Aside from
the applications that require the enrichment of lead, be-
cause of the diversity and controllable ability of func-
tional molecules on the surface of SNPs, efforts in our
group are being made to extend current work to applica-
tions in selective removal of heavy metal ions such as
Hg(II), Cu(II), As(III), and Cd(II).
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