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Abstract

The photoluminescence behavior of CdS quantum dots in initial growth stage was studied in connection with an
annealing process. Compared to the as-synthesized CdS quantum dots (quantum efficiencyffi 1%), the heat-treated
sample showed enhanced luminescence properties (quantum efficiencyffi 29%) with a narrow band-edge emission.
The simple annealing process diminished the accumulated defect states within the nanoparticles and thereby
reduced the nonradiative recombination, which was confirmed by diffraction, absorption, and time-resolved
photoluminescence. Consequently, the highly luminescent and defect-free nanoparticles were obtained by a facile
and straightforward process.
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Background
Due to the benefits of their size-tunable physical proper-
ties [1-3], nanoscale semiconductor materials have prom-
ising future applications, including the optoelectronic
devices such as light-emitting diodes [4-8] and next-
generation quantum dot solar cells [9-14]. Moreover,
nanoscale semiconductors functionalized with biomole-
cules are used as molecular fluorescent probes in bio-
logical applications [15].
In recent years, there has been a rapid development of

the growth techniques for quantum dots with high crystal-
linity and narrow size distribution [16-18]. The hot-
injection techniques allow the affordable growth of a wide
range of nanoscale materials with high quality [19-21]. On
the other hand, low-temperature synthesis has not been
actively studied yet. Low-temperature synthesis has higher
potential than hot-injection techniques because the
process is relatively simple and nontoxic [22]. However,
the size distribution and the crystallinity of nanoparticles
are generally poor because of low synthetic temperature
and surface defects [23]. Recently, several papers have
introduced advanced low-temperature synthesis and
* Correspondence: byungwoo@snu.ac.kr
†Equal contributors
WCU Hybrid Materials Program, Department of Materials Science and
Engineering, Research Institute of Advanced Materials, Seoul National
University, Seoul 151-744, South Korea

© 2012 Kim et al.; licensee Springer. This is an
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
colloidal growth that can yield quantum dots with a suffi-
ciently narrow size distribution [24-27].
In this regard, introducing a facile annealing process

has great potential for enhancing the quantum efficiency
and tuning the size of nanocrystals. However, systematic
analysis of the initial growth stage of the nanoparticles
has rarely been studied. In this work, a simple aqueous
system and straightforward annealing process were applied
to the preparation of highly luminescent CdS quantum
dots. The appropriate annealing condition was well corre-
lated with the quantum dot size, local strain (crystallinity),
and radiative/nonradiative recombination rates.
Methods
The CdS quantum dots were synthesized by using a com-
bination of the reverse-micelle method and post-growth
annealing process. Cadmium chloride (CdCl2, 0.182 g)
and sodium sulfide (Na2S, 0.036 g) were separately dis-
solved in distilled water (15 ml) and stirred to achieve
their complete dissolution. Linoleic acid ((C17H31)COOH,
2.4 ml) and sodium linoleate ((C17H31)COONa, 2 g) were
dissolved in ethanol (15 ml) and formed transparent solu-
tions. After the two solutions were mixed and stirred vig-
orously, the color changed from transparent to opaque
white, implying the formation of a microemulsion consist-
ing of cadmium linoleate. After the addition of sodium
sulfide, the color changed from white to greenish yellow.
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Figure 1 X-ray diffraction of CdS quantum dots with different
annealing times at 100°C.
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For the annealing process, the autoclave was heated at
100°C for 1 to 24 h. In order to increase the quantum dot
size, post-growth annealing was also conducted at 125°C
to 225°C with the same annealing time (12 h). The result-
ant CdS quantum dots were precipitated by using centri-
fugation and cleaned several times with ethanol. Finally,
the CdS quantum dots were dispersed into chloroform
(CHCl3, 40 ml), displaying a translucent yellow solution.
The structural properties of the quantum dots, such as

crystal size and local strain, were studied using X-ray dif-
fraction (XRD; M18XHF-SRA, MAC Science, Yokohama,
Japan) with θ to 2θ curves. To analyze the optical proper-
ties, the absorbance was measured using UV/visible spec-
trometry, and the photoluminescence (PL) data were
measured under 360-nm excitation wavelength with a
spectrofluorometer (FP-6500, JASCO, Essex, UK). The
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Figure 2 XPS spectra. (a) Cd 3d, (b) O 1s, and (c) S 2p with bare and 12-h
binding energy of CdS quantum dots was analyzed by X-ray
photoelectron spectroscopy (XPS; Sigma Probe, Thermo
VG Scientific, Logan, UT, USA) using Al Kα radiation
(1,486.6 eV). Time-resolved PL was measured by using a
picosecond laser system (FLS920P, Edinburgh Instruments
Ltd., Livingston, UK), and the nanostructures of the CdS
nanoparticles were analyzed by a high-resolution transmis-
sion electron microscopy (TEM; JEM-3000 F, JEOL Ltd.,
Tokyo, Japan).
Results and discussion
The effects of annealing on the size and crystallinity of
CdS nanocrystals were investigated by XRD (Figure 1)
with different annealing times. Due to the reaction of re-
sidual source during the annealing process plus coarsen-
ing behavior of nanoparticles, the average size of CdS
quantum dot increases with the annealing time [24]. The dif-
fraction peaks show the zinc-blende phase (JCPDS 75–0581)
with no impurity phases. To estimate the nonuniform distri-
bution of local strain (crystallinity) and grain size of CdS
quantum dots, four diffraction peaks were fitted with the
scattering vector k ¼ 4π=λð Þsinθ using a double-peak
Lorentzian function, considering the effects of Kα1 and Kα2
[28-31] and the instrumental-broadening effect. Before the
post-growth annealing process, the size of CdS quantum
dots was estimated to be approximately 2.3 nm, which grad-
ually grew to approximately 3.7 nm with increased annealing
time (in the following Figure 6). As the annealing time
increases, the local strain of CdS quantum dots decreases,
suggesting that defects accumulated in the CdS quantum
dots during the nucleation stage are relaxed by annealing.
The change in the surface states of CdS quantum dots

was examined by XPS (Figure 2). The XPS data of the O 1 s
level display the chemical bonding of carboxyl acid, and the
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Figure 3 Effects of annealing time at 100°C. (a) Absorbance and (b) photoluminescence spectra of CdS nanoparticles as a function of
annealing time at 100°C. The inset shows a normalized PL spectra.
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peak position of the Cd 3d level is not shifted after
annealing. The dotted peak positions denote literature
values [32-34]. If the sample becomes oxidized after
heat treatment, the oxygen and cadmium peaks will
display changes in the chemical bonding to cadmium
sulfate [33-35]. This result revealed that the surface of
the CdS quantum dots was not changed despite the
heat treatment, which means that the linoleate surfac-
tant is still bound to the nanocrystal surface after the
100°C annealing [26].
Figure 3 shows several absorbance and PL spectra after
different annealing times for the CdS nanoparticles. As
the annealing time increases, the absorbance spectra ex-
hibit a red shift relative to the bare sample (Figure 3a).
The band-edge emission also shifts to higher wavelength
because of the increase of quantum dot size during the
annealing process (Figure 3b). The exciton peak becomes
clear after 5 h of annealing, indicating improved crystallin-
ity and size dispersity. It was observed that the absorbance
intensity below the bandgap energy (Eg) decreased with
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Figure 4 Effects of annealing temperature for 12 h. (a) Absorbance and (b) photoluminescence spectra of CdS nanoparticles as a function of
annealing temperature for 12 h. The inset shows normalized PL spectra.
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increasing annealing time, which suggests that the trap-
state reduction has occurred in the CdS quantum dots
[25]. For the bare sample (quantum efficiencyffi 1%),
broad emission ranging from 450 to 650 nm is dominant
(Figure 3b), which originates from the trap-state emission
[27,36]. In contrast, the CdS quantum dots annealed for
12 h exhibit strong and narrow band-edge emission at
440 nm (quantum efficiencyffi 29%). These phenomena also
strongly suggest that simple annealing at 100°C reduces the
trap states in the CdS nanoparticles.
To control the radius of the nanoparticles, post-
growth annealing process was further examined by vary-
ing the annealing temperature (125°C to 225°C). As
shown in Figure 4a, the absorbance spectra show a red
shift relative to the bare sample, confirming increased
nanoparticle size with high annealing temperature. In
addition, the wavelength of the band-edge emission was
controlled from approximately 440 to approximately
490 nm by simply changing the annealing temperature,
as shown in Figure 4b.
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Figure 5 Time-resolved PL data as a function of annealing time
at 100°C. The inset shows normalized data.
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Figure 7 TEM image of the 12-h-annealed CdS quantum dots at
100°C (approximately 3.7 nm in diameter).
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Time-resolved PL measurements were performed to de-
termine the carrier dynamics of CdS quantum dots, as
shown in Figure 5 [37,38]. The bare sample exhibits fast
initial relaxation. In contrast, the initial behavior of the
post-annealed samples exhibits long life decay behavior.
Even though the decay curves in Figure 5 do not show
single-exponential behavior, the decay curves were fitted
assuming single exponential in the initial stage because
the initial decay occupies a large fraction of total recom-
bination. The samples annealed over 12 h show nearly
single-exponential decay, which indicates high crystallinity
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Figure 6 The correlation between local strain, quantum efficiency, rec
annealing time at 100°C.
and the absence of defect-related decay channels [39,40].
This is consistent with the reduction of defect peak (ap-
proximately 550 nm) in Figure 3b after 12-h annealing.
The quantum efficiency (η) is the ratio of radiative recom-
bination to the total recombination as [41]:

η ¼ krad
krad þ knonrad

¼ krad � τ; ð1Þ

where ktotal, krad, knonrad, and τ are the total, radiative,
nonradiative recombination rates, and decay time (krad +
knonrad)

−1, respectively. The quantum efficiency of col-
loidal CdS samples was estimated by comparing with the
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emission of Rhodamine 6G in ethanol (quantum effi-
ciency of approximately 95% for an excitation wavelength
of 488 nm) [42]. Then, each decay time constant was
obtained using the total recombination rates from the
decay curves (Figure 5) and quantum efficiency.
The overall properties of CdS nanoparticles were sum-

marized in Figure 6. It is clear that the emission decay for
the bare CdS is dominated by nonradiative decay, which is
mediated by high-density trap states in the nanoparticles.
However, the facile annealing reduces the local strain and
nonradiative recombination center and thereby exhibits
longer carrier lifetime and higher quantum efficiency, con-
sistent with the TEM data of Figure 7. In this way, we
straightforwardly synthesized highly luminescent CdS
nanoparticles, from 1% to 29% in quantum efficiency.

Conclusions
The luminescence properties of CdS quantum dots in the
initial growth stage were examined in connection with a
simple annealing process. Both the accumulated defect
states and nonradiative recombination rates were reduced,
and these correlations were confirmed systematically by
diffraction, absorption, and time-resolved photolumines-
cence. Consequently, the highly luminescent (quantum ef-
ficiency of 29% from the initial 1%) and defect-free
nanoparticles were obtained by a facile annealing process.
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