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Abstract

Aluminum-doped zinc oxide ceramics with yttria doping (AZO:Y) ranging from 0 to 0.2 wt.% were fabricated by
pressureless sintering yttria-modified nanoparticles in air at 1,300°C. Scanning electron microscopy,
energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, a physical property measurement system, and a
densimeter were employed to characterize the precursor nanoparticles and the sintered AZO ceramics. It was
shown that a small amount of yttria doping can remarkably retard the growth of the as-received precursor
nanoparticles, further improve the microstructure, refine the grain size, and enhance the density for the sintered
ceramic. Increasing the yttria doping to 0.2 wt.%, the AZO:Y nanoparticles synthetized by a coprecipitation process
have a nearly sphere-shaped morphology and a mean particle diameter of 15.1 nm. Using the same amount of
yttria, a fully dense AZO ceramic (99.98% of theoretical density) with a grain size of 2.2 μm and a bulk resistivity of
4.6 × 10−3Ω�cm can be achieved. This kind of AZO:Y ceramic has a potential to be used as a high-quality sputtering
target to deposit ZnO-based transparent conductive films with better optical and electrical properties.
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Background
Transparent conductive oxides (TCO) as transparent elec-
trodes have been widely used in thin-film solar cells and
flat panel display devices [1,2]. The commonly applied
TCO materials are In2O3:Sn (ITO), SnO2:F (FTO), and
ZnO:Al (AZO) [1,2]. AZO has attracted much interest as
a potential substitute for ITO due to the abundance of its
constituent elements in nature, relatively low deposition
temperature, and stability in hydrogen plasma [2,3].
The magnetron-sputtering ceramic target is one of the

most widely used methods for AZO film deposition [3].
In the sputtering system, the target plays a major role in
achieving high-quality films [4-7]. Generally, the target
for sputtering TCO films should have a high density,
finer grain size, and better conductance [7-11], which
will be helpful for avoiding the formation of nodules to
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prolong the target lifetime [7,8], increasing the depos-
ition rate and film uniformity [9] and meeting the re-
quirement of direct current (DC) sputtering. The
attempts to enhance the density of the AZO ceramic tar-
get become a crucial issue for both researchers and tar-
get manufacturers [7,8,12-14]. Sun et al. [12] fabricated
an ultrahigh-density AZO sintered body (>99.7% theor-
etical density) after pressureless sintering at 1,400°C by
adjusting the mass fraction of polyacrylic acid when slip
casting a mixture slurry of commercial ZnO and 2 wt.%
Al2O3 powders. Hwang et al. [13] found that the prelim-
inary heat treatment under external pressure increased
the density and uniformity after a final sintering. The
maximum density value of 2 wt.% Al-doped ZnO sin-
tered at 1,350°C was about 5.52 g/cm3 (approximately
98.9% of the theoretical density). Recently, Zhang et al.
[14] used a two-step sintering process to obtain the
AZO ceramic with a relative density of more than 99%
by sintering the 30-nm sol–gel-synthesized AZO nano-
particles at the second-step sintering temperature of
1,000°C for 12 h. To our best knowledge, the nearly full-
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dense (namely, exceeding 99.9% of the theoretical density)
AZO ceramic has rarely been reported and still kept a
challenge as before, especially by a simple and low-cost
pressureless sintering at a relatively low temperature.
Few studies have also shown that a small amount

of a rare earth element such as yttrium introduced
into a ZnO matrix can obviously improve the proper-
ties of both ZnO films and the corresponding ceramic
sputtering targets [15-18]. For example, Han et al.
[16] have utilized an electrochemical deposition
method to obtain a 3.7 at% yttrium-doping ZnO film
with a resistivity of as low as 6.3 × 10−5Ω cm after
post-deposition annealing in nitrogen at 300°C. GfE
Co. (Nuremberg, Germany) has produced a novel
aluminum-doped zinc oxide ceramic with yttria dop-
ing (AZO:Y) target containing a small amount of
Y2O3 besides Al2O3, which can be stably sputtered by
pulsed DC sputtering technology due to the higher
conductivity [17,18]. Using this kind of target, Tsai et al.
[19] found that the thin AZO:Y film deposited at 300°C
had the lowest resistivity of 3.6 × 10−4Ω cm, the highest
mobility of 30.7 cm2 V−1�s−1, and the highest carrier
concentration of 5.6 × 1020 cm−3.
However, the above mentioned research results mainly

focused on the properties of AZO:Y films; the detailed
investigation on the influence of Y doping on the mir-
crostructure and densification of the AZO ceramic tar-
get itself is lacking. In this work, we attempted to
fabricate highly dense AZO:Y ceramics by pressureless
sintering by a coprecipitation process using Y and Al co-
doped ZnO nanoparticles as raw materials, and the
microstructure and densification of AZO:Y ceramic were
investigated.

Methods
Synthesis of AZO:Y nanoparticles
Y-doped AZO (AZO:Y) nanoparticles were synthesized
by a coprecipitation process, using an AR grade of zinc
nitrate, aluminum nitrate, yttrium nitrate, and ammo-
nium acid carbonate as starting materials (all purchased
from Sinopharm Group Co. Ltd., Shanghai, China). A
1 M distilled water solution of Zn(NO3)2�6H2O, Al
(NO3)3�9H2O, and Y(NO3)2�6H2O, whose amounts
were determined by Al2O3/[ZnO+Al2O3] = 2 wt.%
and Y2O3/[ZnO+Al2O3] = 0, 0.1, 0.15, and 0.2 wt.%
(the corresponding samples being named AZO:Y0,
AZO:Y0.1, AZO:Y0.15, and AZO:Y0.2), respectively,
were added to 2 M NH4HCO3 solution drop by drop
at a constant temperature of 30°C with stirring to
produce a mass white precipitate. After aging for
24 h, the precipitate was filtrated and washed several
times, followed by drying for 12 h in an oven at 100°C.
Then, the precipitate was calcined at 600°C for 2 h to
form AZO:Y nanoparticles.
Sintering of AZO:Y ceramics
The as-received AZO:Y nanoparticles were first granulated
by spray drying to form larger sphere aggregations with a
diameter of approximately 10 μm and then were pressed by
uniaxial pressing (50 MPa, 3 min) in a stainless steel die
with a diameter of 8 cm. The green bodies were subse-
quently pressed by cold isostatic pressing (250 MPa, 5 min)
and sintered in air for 8 h at 1,300°C in an electric furnace.
In order to clearly observe the microstructure and conveni-
ently measure the conductivity, the sintered specimens
were ground and polished with a 1-μm corundum slurry
and then thermally etched at 900°C for 20 min.

Characterization
The phases of the AZO:Y nanoparticles and sintered
specimens were identified by X-ray diffraction analysis
(XRD, D8 Advance, Bruker AXS GmbH, Karlsruhe,
Germany) with CuKα radiation (λ= 1.5406 Å) operated
at 40 kV and 40 mA and a scanning step of 0.02°/s. The
morphology, microstructure, and composition analyses
of the AZO:Y nanoparticles and the sintered bodies were
performed using a scanning electron microscopy(SEM)/
energy-dispersive X-ray analysis (EDAX) system (S-4800,
Hitachi Ltd., Tokyo, Japan). The average particle/grain
size of the as-calcined nanoparticle or sintered ceramic
specimen was estimated from a minimum of 100 parti-
cles/grains obtained from the SEM images by the linear
intercept method proposed by Mendelson. The densities
of the sintered specimens were determined by Archime-
des’s method with a densitometer (MH-600, MatsuHaku
Electronic Co., Ltd., Taichung, Taiwan). The bulk resis-
tivities were measured by a physical property measure-
ment system (PPMS; Model-9, Quantum Design Inc.,
San Diego, CA, USA) at room temperature.

Results and discussion
The SEM images of the unmodified (Figure 1a) and dif-
ferent amounts of yttria-modified AZO (Figure 1b,c,d)
nanoparticles after calcination at 600°C for 2 h as well as
the plot (Figure 1e) of particle sizes estimated from the
SEM images as a function of yttria content are shown.
All nanoparticle samples exhibit a nearly spherical
morphology, and the average particle sizes are 45.5, 21.6,
19.1, and 15.1 nm for the AZO:Y0, AZO:Y0.1, AZO:Y0.15,
and AZO:Y0.2 samples, respectively, which show a trend
of size decrease with increasing Y2O3 contents. The re-
sult of the SEM images suggests that a small amount of
Y2O3 addition can remarkably retard the growth of AZO
nanoparticles during calcination. In order to explore the
phase of AZO:Y nanoparticles after calcination, a 0.2 wt.%
Y2O3-doping nanoparticle sample was used to carry out
the XRD analysis, as shown in Figure 2. It can be seen
that all diffraction peaks are only labeled to the wurtzite
ZnO structure (JCPDS card no. 036–1451) without any



Figure 1 SEM images and the calculated particle sizes. Images
of AZOY nanoparticles calcined at 600 °C for 2 h: (a) AZO:Y0, (b)
AZO:Y0.1, (c) AZO:Y0.15, and (d) AZO:Y0.2. (e) The plot of the particle
sizes calculated from (a to d) SEM images as a function of Y2O3

content.

Figure 2 X-ray diffraction pattern of nanoparticles. X-ray
diffraction patterns of (a) calcined AZO:Y0.2 nanoparticles and (b)
standard wurtziteZnO curve from JCPDS card no. 036–1451.
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secondary phase diffraction peaks from Al2O3 and Y2O3 or
their compound. According to the energy-dispersive X-ray
spectroscopy (EDS) analyses of AZO:Y0.2 nanoparticles
shown in Figure 3, Al species are found, while the trace of
Y species cannot be detected due to its trivial content to
the EDS detection. It can be summarized that the role of
yttria doping in the calcined AZO nanoparticles is to de-
crease the particle size.
The AZO:Y ceramic was fabricated by pressureless sin-
tering the calcined AZO:Y nanoparticles at 1,300°C in
air. Figure 4 shows the XRD patterns of the sintered spe-
cimens at 1,300°C. For all sintered specimens, except for
the main diffraction peaks corresponding to the hex-
agonal wurtzite ZnO structure, other small peaks are
assigned to the ZnAl2O4 phase. Similarly, the phase
related to the yttrium dopant cannot be observed. Be-
cause the ionic radius of yttrium (approximately 0.90 Å)
is larger than that of zinc (approximately 0.74 Å),
yttrium is hardly doped into the ZnO lattice. Almost all
yttrium will react with Al2O3 to form an Al2Y4O9 phase,
as described in the patent [18] and the literature [20]. In
addition, we also use EDS to detect a tiny area with Y ag-
gregation around the grain boundary and further verify
that the atom ratio of Y to Al is 2.2, which is close to the
stoichiometric ratio of the Al2Y4O9 phase (not shown in
this paper). Considering the fact that the solubility of the
Al element in ZnO is about 0.9 at% as determined by
Zhang [21] and that excess Al2O3 totally reacts with
both ZnO and Y2O3 to transform into ZnAl2O4 and
Al2Y4O9, respectively, the final composition of the sin-
tered ceramic can be approximatively expressed as
97.4 wt.% ZnO:Al + (2.6 to 2.5) wt.% ZnAl2O4 + (0 to 0.2)
wt.% Al2Y4O9 with varied Y2O3 doping . Taking the the-
oretical density (TD) value of ZnO:Al, ZnAl2O4, and
Al2Y4O9 as 5.610 g/cm3, 4.640 g/cm3, and 4.520 g/cm3,
the reasonable TDs of the final sintered AZO ceramics
can be deduced to be 5.585 g/cm3 for the yttria-undoped
ceramic and approximately 5.583 g/cm3 for the yttria-
modified ceramics using a weighted average calculation.
The measured densities and the TDs as a function of Y2O3

concentrations are plotted in Figure 5. Increasing the



Figure 3 EDS pattern of nanoparticles. EDS pattern of AZO:Y0.2 nanoparticles.
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Y2O3 content, the density of the sintered specimen
increased from 5.524 g/cm3 (98.90% of TD) without any
Y2O3 doping to the highest one of 5.583 g/cm3 (99.98%
of TD) with a Y2O3 content of 0.2 wt.%. So, the small
amount of Y2O3 addition can obviously enhance the
density to be close to the theoretical density. Fur-
thermore, our research also reveals that the Y2O3

content beyond 0.2 wt.% will severely deteriorate the
density of the AZO ceramic (not shown here). A
doping content of 0.2 wt.% Y2O3 should be the most
optimal one.
In order to understand the effect of Y2O3 modification

on the microstructure of the sintered AZO ceramics,
SEM was employed to observe the polished sample sur-
face, as shown in Figure 6a,b,c,d. For the AZO:Y0 sam-
ple, one can observe that the grain is not uniform with
an average size of about 5.7 μm, and some small white
particles with a size of approximately 0.5 μm uniformly
disperse in an inner grain and/or grain boundary. These
smaller white particles are deemed to be the secondary-
phase ZnAl2O4, as described by Han et al. [22] and also
determined by EDS analysis as shown in Figure 6e,f,
Figure 4 X-ray diffraction patterns of sintered ceramics. X-ray
diffraction patterns of the 0, 0.1, 0.15, and 0.2 wt.% Y2O3-doped AZO
ceramics sintered at 1,300°C.
where the abundant Al element in the white particles is
much higher than that in the AZO:Y grain. In addition,
there are some small cavities and microstructural defects
in the sintered body. However, with increasing Y2O3

content (shown in Figure 6b,c,d), the grain size
decreases to 2.0, 2.4, and 2.2 μm for AZO:Y0.1, AZO:
Y0.15, and AZO:Y0.2, respectively, where the grains be-
come more uniform than those in the AZO:Y0 sample.
Meanwhile, the small cavities and microstructural
defects almost disappear with the increase of the Y2O3

content, implying an increase in density. This result is
also in accordance with the measured density shown in
Figure 5. So, the observation on the microstructure
demonstrates that the addition of a small amount of
Y2O3 may also play a key role in increasing the density,
refining the grain, and improving the microstructure
uniformity. The reason for achieving a highly dense
AZO ceramic with a fine grain can be ascribed to the
following two factors: The first may be due to the use of
finer AZO:Y raw nanoparticles, which possess a much
higher sintering activity. Due to the smallest particle
size, AZO:Y0.2 nanoparticles can be easily sintered to
bemore dense at a relatively low temperature. The
Figure 5 The measured densities and the theoretical densities.
The measured densities and the TDs as a function of Y2O3

concentrations.



Figure 6 SEM images and EDS analysis of sintered ceramics. SEM images of sintered ceramics: (a) AZO:Y0, (b) AZO:Y0.1, (c) AZO:Y0.15, and (d)
AZO:Y0.2. EDS analysis of a (e) white ZnAl2O4 particle and (f) AZO:Y grain in the AZO:Y0.2 ceramic sample.
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second may be due to the existence of the
secondary-phase particles in the grain boundary. Be-
sides ZnAl2O4 particles, the introduction of Al2Y4O9

into the grain boundary by Y2O3 doping can further
refine the grain size by inhibiting the grain growth
by pinning or dragging the migration of grain
boundaries [22].
Except for a high density and fine grain, a low resistiv-

ity of the AZO ceramic target will meet the requirement
of DC sputtering with a high deposition rate [5]. To
study the effect of yttria addition on the bulk resistivity
of the AZO ceramic, PPMS was used to measure the re-
sistivity; the results are listed in Table 1. It can be found
that the Y2O3 addition in the AZO matrix does not
change the resistivity to a great extent. It just varies from
2.1 × 10−3Ω�cm without yttria addition to 4.6 × 10−3Ω�
cm for the AZO:Y0.2 sample, which is yet to meet the re-
quirement of DC sputtering. The increase in bulk
Table 1 Bulk resistivity

Ceramic samples AZO:Y0 AZO:Y0.1 AZO:Y0.15 AZO:Y0.2

Bulk resistivity (Ω�cm) 2.1 × 10−3 3.3 × 10−3 4.3 × 10−3 4.6 × 10−3

Bulk resistivity of AZO:Y ceramic with varied Y2O3 contents.
resistivity can be interpreted by the fact that more AZO
grains are refined by yttria doping, resulting in more ser-
ious grain boundary scattering [23].

Conclusions
The main focus of this study was to improve the density
and microstructure of the AZO ceramic target by introdu-
cing a yttria dopant with a low-cost pressureless sintering
process. SEM, EDS, XRD, PPMS, and a densimeter were
employed to characterize the precursor nanoparticles and
the sintered AZO ceramics. Increasing the yttria doping to
0.2 wt.%, the AZO:Y nanoparticle synthesized by a copreci-
pitation process has a nearly sphere-shaped morphology
and a mean particle diameter of 15.1 nm. With the same
amount of yttria, a fully dense AZO ceramic (99.98% of
TD) with a grain size of 2.2 μm and a bulk resistivity of
4.6× 10−3Ω�cm can be achieved. This kind of AZO:Y cer-
amic has a potential to be used as a high-quality sputtering
target to deposit ZnO-based transparent conductive films
with higher optical and electrical properties.

Abbreviations
PPMS: physical property measurement system; TD: theoretical density.
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