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Abstract

This review introduces quantum dots (QDs) and explores their properties, synthesis, applications, delivery systems in
biology, and their toxicity. QDs are one of the first nanotechnologies to be integrated with the biological sciences
and are widely anticipated to eventually find application in a number of commercial consumer and clinical
products. They exhibit unique luminescence characteristics and electronic properties such as wide and continuous
absorption spectra, narrow emission spectra, and high light stability. The application of QDs, as a new technology
for biosystems, has been typically studied on mammalian cells. Due to the small structures of QDs, some physical
properties such as optical and electron transport characteristics are quite different from those of the bulk materials.
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Introduction
In the past years, a new class of fluorescent particles
emerged as a good candidate for single molecule and sin-
gle particle tracking (SPT) in living cells and organisms,
the semiconductor quantum dots [1]. Quantum dots
(QDs), often described as ‘artificial atoms,’ exhibit discrete
energy levels, and their bandgap can be precisely modu-
lated by varying the size [2]. QDs are nanometer-scale
semiconductor crystals composed of groups II to VI or
III to V elements and are defined as particles with phys-
ical dimensions smaller than the exciton Bohr radius [3].
QDs exhibit unique luminescence characteristics and
electronic properties such as wide and continuous ab-
sorption spectra, narrow emission spectra, and high
light stability [4]. They absorb white light and then re-
emit a specific color a few nanoseconds later depending
on the bandgap of the material [5-7]. QDs are one of
the first nanotechnologies to be integrated with the bio-
logical sciences [4,8] and are widely anticipated to even-
tually find application in a number of commercial
consumer and clinical products [9]. For example, CdSe/
ZnS quantum dots are presently the most common
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commercially available product as secondary antibody
conjugates that are composed of a core of cadmium sel-
enide ranging from about 10 to 50 atoms in diameter
and about 100 to 100,000 atoms in total [10]. QD range
is typically between 2 and 10 nm in diameter. QDs con-
sist of a semiconductor core, overcoated by a shell (e.g.,
ZnS) to improve optical properties, and a cap enabling
improved solubility in aqueous buffers [11]. The applica-
tion of QDs, as a new technology for biosystems, has
been mostly studied on mammalian cells. There is an in-
creasing tendency to apply QDs as markers in plant sci-
ence [12-16]. The application of QDs as markers of the
cells or their cell walls for plant bioimaging would be
advantageous because of their small size, brightness, in-
dependence of emission on the excitation wavelength,
and stability under relatively harsh environments. They
also have excellent photostability [17] and overcome the
limitations associated with photobleaching. Due to the
small structures of QDs, some physical properties such
as optical and electron transport characteristics are quite
different from those of the bulk materials [18]. The
study of the impurity states in these low dimensional
structures is an important aspect to which many theor-
etical and experimental works based [16,19-21]. This re-
view introduces QDs and explores their properties,
synthesis, applications, delivery systems in biology, and
their toxicity.
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Figure 1 Live HeLa cells growing on a glass coverslip. Labeled
with QD-avidin for GM1 (in red) and Hoechst 3342 for nuclear
staining (in blue) [46].
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Synthesis
Several routes have been used to synthesize QDs [22]
but, generally, techniques for QD synthesis used top-
down processing methods and bottom-up approach.
Top-down processing methods include molecular beam
epitaxy (MBE), ion implantation, e-beam lithography,
and X-ray lithography. Using the alternative bottom-up
approach, colloidal QDs are prepared by self-assemblyin
the solution following a chemical reduction [23-26].
In the approaches of top-down, for making the QDs, a

bulk semiconductor is thinned. For the achieve QDs of
diameter approximately 30 nm, electron beam lithog-
raphy, reactive-ion etching, and/or wet chemical etching
are commonly used. For systematic experiments on
quantum confinement effect, controlled shapes and sizes
are achievable with the desired packing geometries.
Alternatively, focused ion or laser beams have also been
used to fabricate arrays of zero-dimension dots. Incorpor-
ation of impurities into the QDs and structural imperfec-
tions by patterning are major disadvantages with these
processes [22].
A number of different self-assembly techniques

(bottom-up) have been used to synthesize the QDs, and
they may be broadly subdivided into wet-chemical and
vapor-phase methods [22]: (a) wet-chemical methods
mainly follow the conventional precipitation methods
with careful control of parameters for a single solution or
mixture of solutions. The precipitation process invariably
involves both nucleation and limited growth of nanopar-
ticles. Nucleation may be categorized as homogeneous,
heterogeneous, or secondary nucleation [27]. Homoge-
neous nucleation occurs when solute atoms or molecules
combine and reach a critical size without the assistance
of a pre-existing solid interface. Wet-chemical methods
are generally microemulsion, sol–gel [28-30], competitive
reaction chemistry, hot-solution decomposition [31-33],
sonic waves or microwaves [34], and electrochemistry. (b)
Vapor-phase methods for producing QDs begin with pro-
cesses in which layers are grown in an atom-by-atom
process. Consequently, self-assembly of QDs occurs on a
substrate without any patterning [35-38]. Self-assembly
of nanostructures in material grown by MBE, sputtering,
liquid metal ion sources, or aggregation of gaseous
monomers are generally categorized under vapor-phase
methods [22]. MBE has been mainly used to self-
assemble QDs from III-V semiconductors and II-VI semi-
conductors using the large lattice mismatch, e.g., InAs on
GaAs has a 7% mismatch and leads to SK growth [35].

Applications
In this review, we evaluate few experiments that show
the high potential of QDs in biological application, in-
cluding tracking different macromolecules in the cell,
tracking various cells in the tissue, labeling organelles
and cells, clinical applications, and other applications
[39-43].

QDs for labeling cells
Because QDs have constant and unique optical proper-
ties, they are the best candidate for cell labeling, as com-
pared with organic dyes.
Use in plant bioimaging There is an increasing applica-

tion of QD as markers for the cells or cell walls (CWs)
in plant science. A first target location for external
agents in a plant cell is the CW [44]. Djikanović et al.
demonstrated that CdSe QDs bind typically to cellulose
and lignin in the cell wall of Picea omorika branch. Re-
spectively, binding to lignin and cellulose are achieved by
interaction with the chains of C=C and C-C alternating
bonds and interaction with the OH groups [44]. Data
showed that QDs are suitable for homogenous marking
of the whole cell wall. This is a consequence of the struc-
tural arrangement of the cell wall polymers in the whole
cell wall network as well as the extremely small size of
the QDs. These characteristics enable a feasible penetra-
tion of the nanoparticles inside the polymer structures in
the CW composite [44].
Use in animal bioimaging Goldman et al. used biotiny-

lated CTxB in conjunction with QD-avidin conjugates
[45] for labeling of the live HeLa cells which Figure 1
shows an image of the lateral membrane staining for
GM1 ganglioside using QDs (in red) and nuclear staining
using Hoechst (in blue). Punctuate labeling of the cell
surface by QD bioconjugate is typical for molecules such
as GM1 that is present in membrane rafts [46].
In another study, they labeled live HeLa cells which

were biotinylated using sulfo-NHS-SS biotinylating re-
agent and then incubated with the avidin-conjugated yel-
low-emitting QDs. It is shown in Figure 2 [47].



Figure 3 Imaging of rough Escherichia coli JM83 cells. Left
imaging is red QD, and right imaging is green QD. Scale bar is 2 μM
[49].

Valizadeh et al. Nanoscale Research Letters 2012, 7:480 Page 3 of 14
http://www.nanoscalereslett.com/content/7/1/480
For long-term live cell imaging, Hasegawa et al. used
the CHPNH2-QD complexes which were uniformly
internalized into the cells without being aggregated.
Therefore, CHPNH2 nanogel has high potential for use
in long-term live cell imaging. The interaction of QDs
with cells was successfully controlled by the amino group
content of the CHPNH2 nanogel [48].
Use in prokaryote bioimaging Sensitive and selective

staining of bacterial mutants using QD labels was
demonstrated by Smith's group. This principle of de-
tection is based on selective targeting affinity of Zn(II)-
dipicolylamine coordination complex to phospholipids
on the bacterial cell surface of specific strain as shown
in Figure 3 [49,50].
In another study, authors demonstrated the use of

magnetic beads coated with anti-E.coli O157 antibodies
and streptavidin-coated QDs for measuring the bacterial
cell concentration [51]. Yang and Li, using QDs with dif-
ferent emission wavelengths (525 nm and 705 nm),
reported the simultaneous detection of E. coli O157:H7
and Salmonella typhimurium [52].

Tracking different particles
With the application of new imaging methods and the
use of brighter and more stable probes, such as QDs,
single particle tracking has the potential to enter into a
new era of high resolution and long timescale imaging
[53-55]. SPT techniques allow scientists to follow single
molecules in real time and visualize the actual molecular
dynamics in their habitant environment.
For extracellular study Because QDs do not require

intracellular delivery through the impermeable plasma
membrane, membrane receptors or membrane-associated
proteins are intuitive targets for QD imaging [53].
Howarth et al. demonstrated a method to track endogen-
ous cell-surface proteins without cross-linking by purify-
ing monovalent antibody-QD conjugates. They approach
to make monovalent tight-binding QDs, using mSA,
which could be applied to other nanoparticles that show
sufficient electrophoretic mobility. They applied sQD-
Figure 2 HeLa cells labeled with the avidin-conjugated yellow-
emitting QDs.[47]. (A) Image of cells immediately after the
unbound QDs were removed in which labeling is restricted to the
cell surface. (B) Image of a cell that was allowed to grow for 2 h
after washing out of unbound QDs.
mSA1 to study the mobility of a mutant of low-density
lipoprotein (LDL) receptor with a truncated cytosolic tail,
originally found from an individual with familial hyper-
cholesterolemia. This mutant phenotype has been exten-
sively investigated by following LDL, but Howarth and co-
workers analyzed the behavior of the receptor itself (sup-
plementary methods). They imaged single monovalent
sQDs bound to the biotinylated AP-LDL receptor, as indi-
cated by QD fluorescence intensity and blinking. The mo-
bility of mutant receptors labeled with sQD-mSA1 was
significantly greater than that of labeled wild-type LDL re-
ceptor (P=1.6× 10−14) [56].
In similar studies, recently, QDs used to target

membrane proteins and investigate the mobility and
entry-exit kinetics in several systems: (1) various trans-
membrane proteins, for example, integrins [57], channels
[58], and aquaporines [59]; (2) receptors GABA [60], gly-
cine [61], interferon [62], and HER [63,64]; and (3)
neurological synapse [65,66].
For intracellular study In one of the study, the advan-

tages of the broad, continuous excitation spectrum were
demonstrated in a dual-emission, single-excitation label-
ing experiment on mouse fibroblasts. These nanocrystal
probes are, thus, complementary and, in some cases,
may be superior to existing fluorophores [4]. Nonspecific
labeling of the nucleus by both the red and the green
probes resulted in a yellow color. The red actin filaments
were specifically stained. Also, the green probes pene-
trate into the nucleus. Both are shown in Figure 4[4].
This is shown as green color for nucleus and red color

for actin filaments. Nonspecific labeling of the nucleus
by both the red and the green probes resulted in a yellow
color [4].
Superior stability of QD fluorophores gives the possi-

bility to improve quantitation of FISH analysis of human
chromosomal changes. Xiao and Barker have investigated
coated (CdSe)ZnS QDs as fluorescence labels for FISH
of biotinylated DNA to human lymphocyte metaphase
chromosomes under conditions that approximate those
commonly found in clinical cytogenetics laboratories
[67]. They have also demonstrated the application of



Figure 4 Image was obtained with 363-nm excitation and× 40 oil
1.3 numerical aperture objective.

Figure 6 Double fluorescence staining to visualize the
localization of M-cadherin (in red) and nuclei (in blue). Arrows
indicate that M-cadherin-positive satellite cells were located within
the intact soleus muscle in situ [72].
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QDs to FISH detection of the clinically relevant HER2
locus in breast cancer cells (Figure 5).
Pierobon et al. [68] and Nelson et al. [69] tagged my-

osin V molecules with QDS toestablish a link between
in vitro and in-cell measurements of myosin V motors.
Then, the complex myosin V/QD (MyoV::QD), using the
pinocytic influx, was introduced into the cells.
Yoo et al. [70] and Courty et al. [71] characterized the

dynamics of other major actors of intracellular transport:
the kinesin-1, the actin filaments, and the microtubules
[65].
Imaging in situ
Imaging of the satellite cells in rat intact and injured so-
leus muscles using quantum dots The employment of sat-
ellite cells, which are located between the basement
membrane and the plasma membrane in myofibers, is
required for myofiber repair after muscle injury or dis-
ease. Using QDs conjugated to anti-M-cadherin anti-
body, Ishido and Kasuga attempted the visualization of
satellite cells in both intact and injured skeletal muscle
of rat in situ. They demonstrated in situ real-time im-
aging of satellite cells localized within the skeletal muscle
(Figure 6) [72].
Imaging morphogenesis in Xenopus with quantum dot

nanocrystals Stylianou and Skourides are the first to re-
port the use of near-infrared QDs to image mesoderm
Figure 5 Qualitative FISH detection of HER2 gene-amplified SK-
BR-3 breast cancer cells. With (A) streptavidin-conjugated Qdot605
and (B) FITC, respectively [67].
migration in vivo with single cell resolution and provide
quantitative in vivo data regarding migration rates [73].
Navarro et al. experiments revealed that Arabidopsis

exposed to QDs that are dispersed in Hoagland's solu-
tion for 1 to 7 days did not internalize intact QDs. Fluor-
escence microscopy showed strong evidence that the
QDs were generally on the outside surfaces of the roots
(Figure 7). The amount of QDs adsorbed is dependent
on the stability of the QDs in suspension [74].

Using QDs in clinical applications
The development of multifunctional nanomaterials com-
bining diagnostic and therapeutic purpose has recently
attracted intensive interests [75-81]. In this paper, we
have reviewed the clinical applications of QDs in the
three categories that include: (1) biomarker detection in
various cancers, (2) imaging and sensing of infectious
diseases, and (3) other clinical therapeutic applications.
Biomarker detection in various cancers using QDs The

detection of cancer biomarkers is important for diagno-
sis, disease stage forecasting, and clinical management
[82]. QDs with intense and stable fluorescent properties
could enable the detection of tens to hundreds of cancer
biomarkers in blood assays, on cancer tissue biopsies, or
as contrast agents for medical imaging. Clinical outcome
of cancer diagnosis is highly dependent on the stage at
which the malignancy is detected, and therefore, early
screening has become extremely important in any type
of cancer [83].

1. Multicolor and multiplexing potentialities of QDs are
used for the detection of four protein biomarkers
CD15, CD30, CD45, and Pax5 of Hodgkin's
lymphoma from lymphoma tissues. Simultaneous
visualization using multiplexed QD staining was
advantageous for the selective identification of rare
Hodgkin (Reed-Sternberg) cells, a primary diagnostic
target for Hodgkin's disease, which was not



Figure 7 Imaging of roots from plants exposed to QD
suspension in HS+HA. For (A) 1 and (B) 7 days [74].HS, Hoagland's
solution; HA, one of the important groups of organic acids.
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achievable using traditional immunohistochemistry
assays [84,85].

2. Yu et al. reported the use of GSH-TGA-QDs-ND-1
probes to label colorectal cancer cells CCL187. They
prepared QDs, which were conjugated with
monoclonal antibody ND-1 for specific reaction with
antigen LEA [86].

3. In the United States, pancreatic cancer is the fourth
leading cause of cancer death (about 18,770 men and
18,030 women (36,800 people) in 2010) [87]. Using
semiconductor QD-antibody conjugates, Lee et al.
demonstrated quantitative profiling of biomarkers for
pancreatic cancer at the single-cell level. Their results
show the possibility of this method for staging and
forecasting, such as prostate stem cell antigen
claudin-4, and mesothelin, which are expressed in
different stages of progression of pancreatic cancer
[82]. Anyway, realizing quantitative profiling requires
stable quantum yield, monodisperse QD-Ab
conjugates, and well-defined surface chemistry [88].

There are evidences showing the application of QDs in
micro- and nanoarrays for the detection of cancer bio-
markers [83].
Imaging and sensing of infectious diseases by QDs QDs

have become one of the most hopeful and interesting
materials for diagnostic applications of bioimaging, label-
ing, and sensing for infectious diseases such as respira-
tory syncytial virus (RSV)that isone of the families of
Paramyxoviridae [50]. In Table 1, some of the infectious
diseases and QDs used to distinguish them are shown.

1. QDs for assessing axon growth

A major health problem with injuries to the spinal
cord and brain is traumatic central nervous system
injury reporting of approximately 265,000 and 1.5
million new injuries each year [103-105]. QDs
represent a new device of significant potential in
neuroscience research, and they are useful for
experiments that are limited by the restricted
anatomy of neuronal and glial interactions [106]. One
of the problems in treatment is estimating its
effectiveness. They allow the ability to visualize and
track dynamic molecular processes over long times
(Figure 8) [106]. Application of surface-engineered
QDs is an area of nanotechnology probing the details
of cellular and molecular processes in neuronal cells
[4,107-109]. QD bioconjugates based on surface
chemistry can be broadly classified as follows: (1)
QDs' surface modified by bioactive molecules and (2)
QD-polymer nanocomposites [103]. This advance
might be significantly important to assess axon
growth pending the regeneration process [103].
Previous investigations were demonstrated in Table 2.

2. QD used as a probe in an anti-malarial drug-
screening assay
Malaria is a major global health problem, threatening
over 300 million people and causing nearly one
million deaths annually [114,115]. Tokumasu et al.
used QD-Ab to demonstrate the distinct pattern of
distribution of protein and to observe erythrocyte
membrane deformation occurring duringthe invasion
of erythrocytes by Plasmodium falciparum [116]. Ku
et al. showed a simple and efficient method to label
P. falciparum-infected RBC using a QD-based probe
and its applicability as an efficient probe for anti-
malarial drug screening [115].

Other applications
QDs as pH probes for the study of enzyme reaction kinet-
ics [117] Lately, worth advancement has been achieved
in water-soluble QDs as ionic probe. Jin et al. reported
the use of modified CdSe QDs for the sensitive deter-
mination of cyanide ions [C�N]− [117,118]. Xie et al.
reported the determination of Cu2+ by using CdSe/ZnS
QDs modified with bovine serum albumin [119]. QDs
also have been reported to be sensitive to pH [120-125].
The sensitivity of QDs' photoluminescence to pH, im-
prove stability, and a monitoring range for the determin-
ation of proton concentration, which is maybe due to a
function of surface modifications and effects on exciton
trap sites, leads to applications utilizing QDs as pH
probes [126]. Water-soluble QDs, ZnS, modified with
mercaptoacetic acid (MAA) were sensitive to environ-
mental factors and found to be a satisfactory pH probes
that could have potential applications in chemical and
biochemical sensing. Using the modified QD surface,
they were applied as pH probes in monitoring the
hydrolysis of glycidyl butyrate which is catalyzed by por-
cine pancreatic lipase (PPL) [117].
QDs use for protein micro- and nanoarrays to the de-

tection of cancer biomarkers Protein microarrays are use-
ful device as highthroughput screening tools in
proteomics [127-129], for biosensing purpose [130], new



able 1 Some of the infectious diseases and QDs used to distinguish them

uthors Type of infectious diseases In vitro/in vivo Type of modified QDs

ripp et al. [89] RSV In vitro/in vivo Antibody anti-F protein conjugated to QDs(CdTe)

grawal et al. [90] Individual molecules of genes,
proteins, and virus particles

In vivo QD-antibody color-coded NP
probes and two-color co-localization imaging

entzen et al. [91] RSV In vivo Streptavidin-coated QDs conjugated
to antibody anti-F and antibody anti-G

warakanath et al. [92] S. typhimurium In vivo Antibody-QD and DNA aptamer-QD

E. coli

B. subtilis spores

oldman et al. [93] Choleratoxin, ricin, shinga-like toxin1 and
staphylococcal enterotoxin B

In vitro Antibody-QD (CdSe/Zns)

hao et al. [94] Food-borne pathogenic E. coli O157:H7,
S. typhimurium and S. flexneri

QDanti-S. flexneri antibody,anti-E. coli
antibody, anti-S. typhimurium antibody

ahn et al. [95] Single cells of E.coli O157:H7 Streptavidin-coated QDs conjugated to antibody

ukhopadhyay et al. [96] Detect E. coli at levels as low as
104 bacteria/ml of sample

Mannose-conjugated QDs

dgar et al. [97] Mycobacterium In vivo Streptavidin-coated QDs conjugated to phage

B. anthracis

hu et al. [98] C. parvum QD-conjugated antibodies

G. lamblia

lostranec et al. [99] Biomarkers of the most globally
prevalent blood-borne infectious diseases
(i.e., hepatitis B, hepatitis C, and HIV) with
low sample volume

QD-antibody

azouli et al. [100] Mycobacterium genus In vivo Specific DNA sequences combining
QDs with magnetic beads [101,102]

ahn et al. [95] Individual pathogenic E. coli O157:H7
in phosphate buffer saline solution

Streptavidin-coated Qdots labeled by
antibody selectively targeted pathogenic
E. coli O157:H7

u and Li [51] E. coli O157 In vivo Streptavidin-coated QDs conjugated to
anti-E. coli O157 antibody

ang and Li [52] E. coli O157∶H7 In vivo QDs with different sizes conjugated to
anti-E. coli O157 and anti-Salmonella antibodies

S. typhimurium
The bead-cell complexes reacted with QD-antibody
conjugates to form bead-cell-QD complexes

ther clinical therapeutic applications.
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Figure 8 Using QD conjugated with antibody for labeling of neurons and glia. (A) Labeled β-tubulin in primary cortical neurons. (B) Labeled
glial fibrillary acidic protein in primary cortical astrocytes. (C) Labeled for β-tubulin in PC12 cells [106].



Table 2 Applications of QDs in labeling neurons and glia cells

Authors Type of QD used Application of QD

Dahan et al. [61] QD-GlyR Target neurons to investigate a specific neurophysiological
process(QDs to track individual glycine receptors and analyze
their lateral dynamics in the neuronal membrane)

Pathak et al. [106] Antibody-conjugated quantum dots Performed the specific labeling of neurons and glia cells

Vu et al. [110] Tagged nerve growth factor (βNGF) to QDs Investigate the QD nanostructure's potential to assess
the neurite outgrowth

Sundara Rajan et al. [111] QD-anti-TrkA-TrkA receptor with transport by GFP Immobilized QDs were conjugated with NGF, activate
Trk receptors, and initiate neuronal differentiation
in PC12 cells.

Howarth et al. [112] Tagged cell surface proteins with a specific
peptide (acceptor protein) that can be directly
biotinylated as a target for streptavidin-conjugated
quantum dots

Specifically label and track AMPA receptors on
cultured hippocampal neurons

Prasad et al. [113] Thioglycolic acid (TGA)-stabilized CdTe QDs Performed imaging of PC12 cells

Valizadeh et al. Nanoscale Research Letters 2012, 7:480 Page 7 of 14
http://www.nanoscalereslett.com/content/7/1/480
drug discovery [131], and enabling a quick parallel
screening method for the detection of protein-protein
interactions in case of large protein populations. There
are various reports in which QDs have been used in
microarray fabrication such as sandwich-based immuno-
assay type, RP protein microarray type, etc. [132-135].
Here, IgG detection was done on a glass chip using a
QD-labeled secondary Abs as sandwich assay approach.
In RP protein microarrays, Geho et al. used pegylated
QDs conjugated with streptavidin as detection elements.
In another study, Zajac et al. investigated the ability of
the platform to detect different cytokines TNF-α, IL-8,
IL-6, MIP-1β, IL-13, and IL-1β using two different models
of quantum dot probes. Their results demonstrated high
sensitivity of the investigated detection system with less
than picomolar concentration [136]. Kerman et al.
reported the use of QDs for detection cell lysates spiked
with DNA-PK proteins with the help of mAb, in an RP
protein microarray format. Kerman et al. make immuno-
sensor based on QD for the detection of prostate specific
antigen (PSA) in a sandwich assay approach for chip
fabrication [134]. Gokarna et al. used pegylated QD-
conjugated PSA Abs to demonstrate the fabrication of a
Figure 9 Confocal laser scanning fluorescence microscopyimages of c
MRC-5 cells, (C) MCF-7 cells, and (D) YKG-1 cells [48].
cancer protein biochip for the detection of PSA, which is
a biomarker for prostate cancer. The QD nonspecificity
can show to be quite detrimental to some extent in case
of multiplexed assay systems where multiple proteins are
to be detected simultaneously [83].
QD delivery Due to the unique properties of QDs, they

are best tools for intracellular studies such as visualizing
the cellular structure, studying the dynamic cellular pro-
cesses, and tracking single molecules in the cell
[137,138]. To achieve this goal, translocation of functio-
nalized QDs into the cell for labeling organelles and
tracking single molecules is important. QDs have hydro-
phobic surface and have a little toxicity, therefore cannot
be applied in vivo unless their surface is modified. Thus,
by surface modification, their hydrophilicity will increase
but their toxicity will decrease.
Hasegawa et al. used nanogel-QD hybrid nanoparti-

cles for live cell imaging [48]. They also confirmed the
cellular uptake of CHPNH2(15)-QD nanoparticles using
other normal cells (TIG-3 and MRC-5) and cancer
cells (T24, Saos-2, T98G, A549, MCF-7, and YKG-1)
(Figure 9) [48].
ells labeled with CHPNH2(15)-QD nanoparticle. (A) TIG-3 cells, (B)
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In recent years, functional peptides that transmit bio-
materials into cells have been developed in biomaterial
research. Because of lysosomal trapping, QD delivery
into cells with conjugated cell-penetrating peptides by
the endocytic pathway was challenging in biomedical
applications [139]. In another study, engineered peptides
for producing QDs tagging protein ligands and biosen-
sors to their surfaces, by appropriate cysteines or histi-
dines, have served as ligands [140]. Encapsulation of
QDs in viral capsids provides a new tool which allows
the design of intracellular microscopic probes and vec-
tors [141]. More samples of QD delivery systems are
shown in Table 3.
Toxicity of QDs
There are different opinions about the toxicity of QDs;
therefore, we investigated their toxicity in amoeba as pri-
mary eukaryotes, in plant, and in animal.
Table 3 QD delivery systems

Authors Delivery system of QD

Jia et al. [142] Multiwalled carbon
nanotube (MWNT)
delivery system

Chen et al. [143], Xue et al. [144],
Delehanty et al. [145], Ruan et al. [146],
Wei et al.[147]

Tat peptide-mediated
delivery system

Lagerholm et al. [148] Peptide delivery system

Bagalkot et al. [149] A10 RNA aptamer

Bakalova et al. [150] Silica-shelled quantum dots

Yum et al. [151] Nanoscale
mechanochemical method

Yuan et al. [152] Chitosan
(N-acetylglucosamine)
tumor-targeted drug deliver

Hasegawa et al. [48] Nanogel-QD hybrid

Dixit et al. [141] Viral vectors

Zhang and Liu [153] Nonviral vectors

Jablonski et al. [154] Cationic peptide and
a hydrophobic counterion

Qi and Gau [155] QD-amphipol nanocomplex

Gao et al. [109] Polymeric delivery system

Duan and Nie [77] Polymeric delivery system
In amoeba
It has been determined that QD labeling had no detect-
able effect on cell growth and had no deleterious effects
on cellular signaling and motility during development of
the Dictyostelium discoideum cells [47].
In plant
The ratio of reduced glutathione levels (GSH) relative to
the oxidized glutathione (GSSG) in plants suggests that
QDs caused oxidative stress on the plant at this condi-
tion [74].
In animal
Yan et al. investigated the potential vascular endothelial
toxicity of mercaptosuccinic acid (2-sulfanylbutanedioic
acid)-capped QDs in vitro. Their results suggested that
QDs could not only impair mitochondria but also exert
endothelial toxicity through activation of mitochondrial
Use

MWNTs are containing antisense oligodeoxynucleotides
and CdTe QDs via electrostatically layer-by-layer assembling.

QDs conjugated to the cell-penetrating peptide
derived from the human immunodeficiency virus-1
transactivator protein

Nine residue biotinylated l-arginine peptide is used
to enhance delivery of streptavidin-conjugated QDs
into mammalian cells.

Functionalizes the surface of QD with the A10 RNA aptamer,
which recognizes the extracellular domain of the prostate
specific membrane antigen

Based on silica-shelled single QD micelles with
incorporated paramagnetic substances
[tris(2,2,6,6-tetramethyl-3,5-heptanedionate)/gadolinium]
into the micelle and/or silica coat

Using a membrane-penetrating nanoneedle

y

QDs encapsulated with chitosan

Nanogels of CHPNH 2 with 15 amino groups per 100 glucose
units and QDs that were conjugated with protein A molecules
were mixed.

QDs encapsulation in viral capsids

Cappingthe surface of ZnO QD with poly(2-(dimethylamino)
ethyl methacrylate)

Quantum dots have been delivered to the cytosol of
living cells using a combination of a cationic peptide,
polyarginine, and a hydrophobic counterion, pyrenebutyrate.

Advantages include cytoplasm delivery and endosome escape.

The structural design involves encapsulating QDs with an
ABC triblock copolymer and linking this amphiphilic polymer.

QDs were encapsulated by PEI-g-PEG.



Table 4 More details for toxicity of QDs (modified from [163])

QD Model Administration QD concentration Exposure duration Toxicity Study

CdSe/ZnS-SSA EL-4 cells 1 × 106 cells/well 0.1 to 0.4 mg/mL 0 to 24 h Cytotoxic: 0.1 g/mL altered cell
growth; mos cells nonviable at
0.4 mg/mL

Hoshino et al. 2004a

CdSe/ZnS-SSA EL-4 cells 200-μL cell
suspension injected
(iv) into the mice

0.1 mg/mL QDs per
5 × 107 cells

2 h to 7 days No toxicity in ice in vivo Hoshino et al. 2004a
(in vivo)

CdSe/ZnS conjugates:
NH2, OH, OH/COOH,
H2/OH, MUA, COOH

WTK1 cells 5 × 104 cells/mL 1 to 2 μM 12 h 2-μM QD-CO H-induced DNA
damage at 2

Hoshino et al. 2004b

CdSe/ZnS-MUA Vero, HeLa, and
primary human
hepatocytes

100-μL QDs/3 × 104 cells 0 to 0.4 mg/mL 24 h Cytotoxic: 0.2 g/mL, Vero; 0.1 mg/mL,
HeLa; 0.1 m mL, hepatocytes

Shiohara et al. 2004

CdTe Rat pheochromocytoma
cells, murine, microglial
cells

1 × 105 cells/cm2 0.01 to 100 μg/mL 2 to 24 h 10 μg/mL cy toxic Lovric et al. 2005

CdSe-MAA,
TOPO QDs

Primary rat hepatocytes 62.5-1,000 μg/mL 1 to 8 h Cytotoxic: 62 μg/mL cytotoxic
under oxidat e/photolytic conditions

Derfus 2004

No toxicity o addition of ZnS cap

QD micelles: CdSe/ZnS
QDs in (PEG-PE) and
phosphatydilcholine

Xenopus blastomeres 5 × 109 QDs/cell
(approximately
0.23 pmol/cell)

1.5 to 3 nL of 2.3-μM
QDs injected, approximately
2.1 × 109 to 4.2 × 109

injected QDs/cell

Days 5 × 109 QDs/ ll: cell abnormalities,
altered viabil and motility

Dubertret et al. 2002

No toxicity a 2 × 109 QDs/cell

CdSe/ZnS amp-QDs
and mPEG QDs [158]

Mice 200-μL tail vein injection Injections, approximately
180-nM QD, approximately
20-pmol QD/g animal
weight

15-min cell
incubations,
1 to 133 days
in vivo

No signs of l alized necrosis at the
sites of depo tion

Ballou et al. 2004

CdSe/ZnS-DHLA Dictyostelium discoideum
and HeLa cells

400 to 600 nM 45 to 60 min No effects on cell growth Jaiswal et al. 2003

Avidin-conjugated
CdSe/ZnS QDs

HeLa cells 0.5 to 1.0 μM 15 min No effect on ell growth
and develop ent

Jaiswal et al. 2003

CdSe/ZnS-amphiphilic
micelle

Mice Tail vein injection 60-μM QD/g animal
weight, 1-μM and 20-nM
final QD concentration

Not given Mice showed o noticeable ill effects
after imaging

Larson et al. 2003

CdSe/ZnS-DHLA QDs Mice, B16F10 cells 5 × 104 B16F10 cells with
10-μL QDs (approximately
10 pmol), tail vein (iv)
injection

100 μL of B16F10 cells
used for tail vein
injection, approximately
2 × 105 to 4 × 105

cells injected

4- to 6-h cell
incubation, mice
sacrificed at 1 to 6 h

No toxicity o served in cells or mice Voura et al. 2004

CdSe/ZnS-MUA QDs;
QD-SSA complexes
[162]

Vero cells 0.4 mg/mL 0.24 mg/mL 2 h 0.4-mg/mL M A/SSA-QD complexes
did not affec viability of Vero cells

Hanaki et al. 2003

CdSe/ZnS HeLa cells 1 × 106 cells 10 days
(cell culture)

10-nM QD h minimal impact on
cell survival

Chen and Gerion
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Table 4 More details for toxicity of QDs (modified from [163]) (Continued)

10-pmol QDs/1 × 105

cells (approximately
10 nM)

CdTe aqQDs HEK293 cells 1 × 105 cells 300 or 600 nM 3 days Nearly completely inhibited cell growth
even from the very beginning

Nan Chen et al. 2012

CdTe-gelatinized/
nongelatinized

PC12 cells 1 × 105 cells/cm2 1 to 100 nM 72 h At 1 nM,did not initiate any detrimental
effects; at 100 nM, resulted in the death
of all cells

Babu R Prasad et al.
2010

CdTe, CdTe/CdS,
CdTe/CdS/ZnS

K562 and HEK293T
human cell lines

1 × 105 cells 0.2 to 3.0 μM 0 to 48 h Cells treated with CdTe and CdTe/CdS
QDs were mostly nonviable by
48 h (for all concentrations tested).

Su et al. 2009

CdSe/ZnS-PEG
(EviTag T1 490 QD)

Caco-2 (human colon
carcinoma) cell line

106 cells/ml, 0.2 ml/well 0.84 to 105 μM 0 to 24 h Commercially available QD
demonstrated low cytotoxicity
but induced cell detachment.

Wang et al. 2008

CdSe Primary rat hippocampal
neuron cells in culture

104to 105 cells/ml 1, 10, and 20nM 24 h 1-nM QD for 24 h showed no decrease
in cell viability; in contrast, cells treated
with 10- and 20-nM QD for 24 h showed
decreases in cell viability on the order
of 20 and 30%.

Tang et al., 2008
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death pathway and induction of endothelial apoptosis
[156].
More recently, Chen et al. have studied the cytotoxicity

of CdTe/CdS (core-shell) structured and also CdTe/CdS/
ZnS (core-shell-shell) structured aqueous synthesized
QDs, and their results suggest that the cytotoxicity of
CdTe QDs not only comes from the release of Cd2+ ions
but also intracellular distribution of QDs in cells and the
associated nanoscale effects [157]. Table 4 demonstrated
more results for toxicity of QDs [158-162].

Conclusions
In this review, we summarize few experiments that illus-
trate the high potential of QDs used for/as:

1. labeling biomolecules and cells;
2. tracer to follow the intracellular/extracellular
dynamic of a single biomolecule/cell;

3. localization of biomolecules in vitro/in vivo;
4. imaging of biomolecules or cells in vitro/in vivo;
5. assessing cell growth in damaged tissue;
6. pH probes for the study of enzyme reaction kinetics;
7. biomarker detection in various cancers;
8. imaging and sensing of infectious diseases; and
9. protein micro- and nanoarrays to the detection of
cancer biomarkers.

These studies have been generated using QDs because
of their small size, brightness, independence of emission
on the excitation wavelength, and stability under rela-
tively harsh environments which would be advantageous.
In contrast, there are different opinions about the tox-
icity and fate of QDs in vivo. Therefore, more experi-
ments should be done, and much more data should be
available, to be sure to do clinical trials on humans.

Future prospects
In the future, QDs will be used for identifying various
categories of cancer cells, the molecular mechanisms of
disease, and new drug action mechanisms, applying them
in the intracellular/extracellular studies, and making new
methods for biochemical assaying.
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